JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A familial disorder of altered DNA-methylation.
J. Med. Genet.
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
In a subset of imprinting disorders caused by epimutations, multiple imprinted loci are affected. Familial occurrence of multilocus imprinting disorders is rare.
Related JoVE Video
Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2.
Fertil. Steril.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
To identify CpG sites differentially methylated in peripheral blood of men with idiopathic infertility due to impaired spermatogenesis as compared with fertile controls.
Related JoVE Video
Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.
J. Mol. Med.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs.
Related JoVE Video
DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery.
Cell Metab.
PUBLISHED: 05-12-2013
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (n = 45) with all stages of NAFLD and controls (n = 18) were analyzed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and methylation differences were seen for nine genes coding for key enzymes in intermediate metabolism (including PC, ACLY, and PLCG1) and insulin/insulin-like signaling (including IGF1, IGFBP2, and PRKCE) and replicated by bisulfite pyrosequening (independent n = 39). Transcription factor binding sites at NAFLD-specific CpG sites were >1,000-fold enriched for ZNF274, PGC1A, and SREBP2. Intraindividual comparison of liver biopsies before and after bariatric surgery showed NAFLD-associated methylation changes to be partially reversible. Postbariatric and NAFLD-specific methylation signatures were clearly distinct both in gene ontology and transcription factor binding site analyses, with >400-fold enrichment of NRF1, HSF1, and ESRRA sites. Our findings provide an example of treatment-induced epigenetic organ remodeling in humans.
Related JoVE Video
Mechanisms of intracerebral lymphoma growth delineated in a syngeneic mouse model of central nervous system lymphoma.
J. Neuropathol. Exp. Neurol.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Primary lymphoma of the central nervous system (PCNSL) is defined as lymphoma of the diffuse large B-cell type confined to the CNS. To understand the effects of the CNS microenvironment on the malignant B cells and their interactions with the cells of the target organ, we analyzed a syngeneic mouse model. Transplantation of BAL17 cells into the frontal white matter of syngeneic BALB/c mice induced lymphomas with major clinical and neuropathologic features that parallel those of human PCNSL, including an angiocentric growth pattern in the brain parenchyma and tropism for the inner and outer ventricular system. Seven cycles of repeated isolation of lymphoma cells from the CNS and their intracerebral reimplantation induced genotypic and phenotypic alterations in resulting BAL17VII cells; the affected genes regulate apoptosis and are of the JAK/STAT pathway. Because lymphoma growth of BAL17VII cells was significantly accelerated, that is, shortening the time to death of the mice, these data indicate that prolonged stay of the lymphoma cells in the CNS was associated with worse outcome. These findings suggest that the CNS microenvironment fosters aggressiveness of lymphoma cells, thereby accelerating the lethal course of PCNSL.
Related JoVE Video
Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas.
Haematologica
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.
Related JoVE Video
Androgen receptor function links human sexual dimorphism to DNA methylation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.
Related JoVE Video
Isolated trisomy 7q21.2-31.31 resulting from a complex familial rearrangement involving chromosomes 7, 9 and 10.
Mol Cytogenet
PUBLISHED: 11-23-2011
Show Abstract
Hide Abstract
Genotype-phenotype correlations for chromosomal imbalances are often limited by overlapping effects of partial trisomy and monosomy resulting from unbalanced translocations and by poor resolution of banding analysis for breakpoint designation. Here we report the clinical features of isolated partial trisomy 7q21.2 to 7q31.31 without overlapping phenotypic effects of partial monosomy in an 8 years old girl. The breakpoints of the unbalanced rearranged chromosome 7 could be defined precisely by array-CGH and a further imbalance could be excluded. The breakpoints of the balanced rearranged chromosomes 9 and 10 were identified by microdissection of fluorescence labelled derivative chromosomes 9 and 10.
Related JoVE Video
A de novo 1.1Mb microdeletion of chromosome 19p13.11 provides indirect evidence for EPS15L1 to be a strong candidate for split hand split foot malformation.
Eur J Med Genet
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
We describe a 3.5 year old girl presenting with short stature, developmental delay, marked muscular hypotonia with ataxia, premature pubarche, and dysmorphic features. A 1.07-1.12Mb-sized de novo microdeletion of chromosome 19p13.11 is most likely the cause for the clinical phenotype. The patient did not show any abnormalities of the extremities which contrasts with the finding of one previously reported patient with an overlapping deletion presenting with split hand and foot malformation (SHFM). The remarkable difference is that in the previously described patient but not in the patient reported herein the genes EPS15L1 and CALR3 were deleted. As EPS15L1 has been associated with limb development previously, the presented case provides indirect evidence that this may be a new candidate gene for SHFM. A possible genotype-phenotype correlation is provided based on literature review and comparison of our patient to the previously reported patients with overlapping or partly overlapping copy number variations in 19p13.11.
Related JoVE Video
Conflicting results of prenatal FISH with different probes for Downs Syndrome critical regions associated with mosaicism for a de novo del(21)(q22) characterised by molecular karyotyping: Case report.
Mol Cytogenet
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
For the rapid detection of common aneuploidies either PCR or Fluorescence in situ hybridisation (FISH) on uncultured amniotic fluid cells are widely used. There are different commercial suppliers providing FISH assays for the detection of trisomies affecting the Downs syndrome critical regions (DSCR) in 21q22. We present a case in which rapid FISH screening with different commercial probes for the DSCR yielded conflicting results. Chromosome analysis revealed a deletion of one chromosome 21 in q22 which explained the findings. Prenatally an additional small supernumerary marker chromosome (sSMC) was discovered as well, which could not be characterised. Postnatal chromosome analysis in lymphocytes of the infant revealed complex mosaicism with four cell lines. By arrayCGH the sSMC was provisionally described as derivative chromosome 21 which was confirmed by targeted FISH experiments.
Related JoVE Video
Congenital lipoid adrenal hyperplasia: functional characterization of three novel mutations in the STAR gene.
J. Clin. Endocrinol. Metab.
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
Context: The steroidogenic acute regulatory protein (StAR) has been shown to be essential for steroidogenesis by mediating cholesterol transfer into mitochondria. Inactivating StAR mutations cause the typical clinical picture of congenital lipoid adrenal hyperplasia. Objective: The objective of the investigation was to study the functional and structural consequences of three novel StAR mutations (p.N148K in an Italian patient; p.P129fs and p.Q128R in a Turkish patient). Methods and Results: Transient in vitro expression of the mutant proteins together with P450 side-chain cleavage enzyme, adrenodoxin, and adrenodoxin reductase yielded severely diminished cholesterol conversion of the p.N148K mutant, the combined p.P129fs and p.Q128R mutant, and the p.P129fs mutant by itself. The p.Q128R mutant led to a higher cholesterol conversion than the wild-type StAR protein. As derived from three-dimensional protein modeling, the residue N148 is lining the ligand cavity of StAR. A positively charged lysine residue at position 148 disturbs the hydrophobic cluster formed by the alpha4-helix and the sterol binding pocket. The frame shift mutation p.P129fs truncates the StAR protein. Residue p.Q128 is situated at the surface of the molecule and is not part of any functionally characterized region of the protein. Conclusion: The mutations p.N148K and p.P129fs cause adrenal insufficiency in both cases and lead to a disorder of sex development with complete sex reversal in the 46, XY case. The mutation p.Q128R, which is not relevant for the patients phenotype, is the first reported variant showing a gain of function. We speculate that the substitution of hydrophilic glutamine with basic arginine at the surface of the molecule may accelerate cholesterol transfer.
Related JoVE Video
Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder.
Psychoneuroendocrinology
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Major depression has been associated with endocrine and immune alterations, in particular a dysregulation of the hypothalamus-pituitary-adrenal system with subsequent hypercortisolism and an imbalance of pro- and anti-inflammatory cytokines. Recent studies suggest that vascular endothelial growth factor (VEGF), a cytokine involved in angiogenesis and neurogenesis, may also be dysregulated during stress and depression. These observations prompted us to examine VEGF and other angiogenic factors in patients with major depressive disorder.
Related JoVE Video
Frequency and characterization of DNA methylation defects in children born SGA.
Eur. J. Hum. Genet.
Show Abstract
Hide Abstract
Various genes located at imprinted loci and regulated by epigenetic mechanisms are involved in the control of growth and differentiation. The broad phenotypic variability of imprinting disorders suggests that individuals with inborn errors of imprinting might remain undetected among patients born small for gestational age (SGA). We evaluated quantitative DNA methylation analysis at differentially methylated regions (DMRs) of 10 imprinted loci (PLAGL1, IGF2R DMR2, GRB10, H19 DMR, IGF2, MEG3, NDN, SNRPN, NESP, NESPAS) by bisulphite pyrosequencing in 98 patients born SGA and 50 controls. For IGF2R DMR2, methylation patterns of additional 47 parent pairs and one mother (95 individuals) of patients included in the SGA cohort were analyzed. In six out of 98 patients born SGA, we detected DNA methylation changes at single loci. In one child, the diagnosis of upd(14)mat syndrome owing to an epimutation of the MEG3 locus in 14q32 could be established. The remaining five patients showed hypomethylation at GRB10 (n=2), hypomethylation at the H19 3CTCF-binding site (n=1), hypermethylation at NDN (n=1) and hypermethylation at IGF2 (n=1). IGF2R DMR2 hypermethylation was detected in five patients, six parents of patients in the SGA cohort and two controls. We conclude that aberrant methylation at imprinted loci in children born SGA exists but seems to be rare if known imprinting syndromes are excluded. Further investigations on the physiological variations and the functional consequences of the detected aberrant methylation are necessary before final conclusions on the clinical impact can be drawn.
Related JoVE Video
High resolution copy number analysis of IRF4 translocation-positive diffuse large B-cell and follicular lymphomas.
Genes Chromosomes Cancer
Show Abstract
Hide Abstract
Translocations affecting chromosome subband 6p25.3 containing the IRF4 gene have been recently described as characteristic alterations in a molecularly distinct subset of germinal center B-cell-derived lymphomas. Secondary changes have yet only been described in few of these lymphomas. Here, we performed array-comparative genomic hybridization and molecular inversion probe microarray analyses on DNA from 12 formalin-fixed paraffin-embedded and two fresh-frozen IRF4 translocation-positive lymphomas, which together with the previously published data on nine cases allowed the extension of copy number analyses to a total of 23 of these lymphomas. All except one case carried chromosomal imbalances, most frequently gains in Xq28, 11q22.3-qter, and 7q32.1-qter and losses in 6q13-16.1, 15q14-22.31, and 17p. No recurrent copy-neutral losses of heterozygosity were observed. TP53 point mutations were detected in three of six cases with loss of 17p. Overall this study unravels a recurrent pattern of secondary genetic alterations in IRF4 translocation-positive lymphomas.
Related JoVE Video
Growth retardation, intellectual disability, facial anomalies, cataract, thoracic hypoplasia, and skeletal abnormalities: a novel phenotype.
Am. J. Med. Genet. A
Show Abstract
Hide Abstract
We report on a 14-year-old girl with growth deficiency, microcephaly, intellectual disability, distinctive dysmorphic features (bulbous nose with wide nasal base, hypotelorism, deeply set eyes, protruding cupped ears, and thick lower lip), cataract, pigmentary retinopathy, hypoplastic thorax, kyphoscoliosis, and unusual skeletal changes but without chromosomal imbalances detected by array-CGH who probably represents a novel phenotype.
Related JoVE Video
DNA-methylation profiling of fetal tissues reveals marked epigenetic differences between chorionic and amniotic samples.
PLoS ONE
Show Abstract
Hide Abstract
Epigenetic mechanisms including DNA methylation are supposed to play a key role in fetal development. Here we have investigated fetal DNA-methylation levels of 27,578 CpG loci in 47 chorionic villi (CVS) and 16 amniotic cell (AC) samples. Methylation levels differed significantly between karyotypically normal AC and CVS for 2,014 genes. AC showed more extreme DNA-methylation levels of these genes than CVS and the differentially methylated genes are significantly enriched for processes characteristic for the different cell types sampled. Furthermore, we identified 404 genes differentially methylated in CVS with trisomy 21. These genes were significantly enriched for high CG dinucleotid (CpG) content and developmental processes associated with Down syndrome. Our study points to major tissue-specific differences of fetal DNA-methylation and gives rise to the hypothesis that part of the Down syndrome phenotype is epigenetically programmed in the first trimester of pregnancy.
Related JoVE Video
Multiplex ligation-dependent probe amplification analysis of the NR0B1(DAX1) locus enables explanation of phenotypic differences in patients with X-linked congenital adrenal hypoplasia.
Horm Res Paediatr
Show Abstract
Hide Abstract
X-linked adrenal hypoplasia congenita (AHC) is a rare disorder characterized by primary adrenal insufficiency and hypogonadic hypogonadism. It is caused by deletions or point mutations of the NR0B1 gene, on Xp21. AHC can be associated with glycerol kinase deficiency, Duchenne muscular dystrophy and mental retardation (MR), as part of a contiguous gene deletion syndrome. A synthetic probe set for multiplex ligation-dependent probe amplification analysis was developed to confirm and characterize NR0B1 deletions in patients with AHC and to correlate their genotypes with their divergent phenotypes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.