JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cell-free synthesis system suitable for disulfide-containing proteins.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Many important therapeutic targets are secreted proteins with multiple disulfide bonds, such as antibodies, cytokines, hormones, and proteases. The preparation of these proteins for structural and functional analyses using cell-based expression systems still suffers from several issues, such as inefficiency, low yield, and difficulty in stable-isotope labeling. The cell-free (or in vitro) protein synthesis system has become a useful protein production method. The openness of the cell-free system allows direct control of the reaction environment to promote protein folding, making it well suited for the synthesis of disulfide-containing proteins. In this study, we developed the Escherichia coli (E. coli) cell lysate-based cell-free synthesis system for disulfide-containing proteins, which can produce sufficient amounts of functional proteins for NMR analyses. Disulfide bond formation was facilitated by the use of glutathione buffer. In addition, disulfide isomerase, DsbC, catalyzed the efficient shuffling of incorrectly formed disulfide bonds during the protein synthesis reaction. We successfully synthesized milligram quantities of functional (15)N-labeled higher eukaryotic proteins, bovine pancreatic trypsin inhibitor (BPTI) and human lysozyme C (LYZ). The NMR spectra and functional analyses indicated that the synthesized proteins are both catalytically functional and properly folded. Thus, the cell-free system is useful for the synthesis of disulfide-containing proteins for structural and functional analyses.
Related JoVE Video
A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution.
Anal. Biochem.
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
During recent years, the targets of protein structure analysis using nuclear magnetic resonance spectroscopy have become larger and more complicated. As a result, a complete and precise stable isotope labeling technique has been desired. A cell-free protein synthesis system is appropriate for this purpose. In the current study, we achieved precise and complete (15)N and (2)H labeling using an Escherichia coli cell extract-based cell-free protein synthesis system by controlling the metabolic reactions in the system with their chemical inhibitors. The addition of aminooxyacetate, d-malate, l-methionine sulfoximine, S-methyl-l-cysteine sulfoximine, 6-diazo-5-oxo-l-norleucine, and 5-diazo-4-oxo-l-norvaline was quite effective for precise amino acid-selective (15)N labeling even for aspartic acid, asparagine, glutamic acid, and glutamine, which generally suffer from severe isotope scrambling and dilution when using the conventional cell-free system. For (2)H labeling, the back-protonation of the H(?) and H(?) positions, which commonly occurred in the conventional system, was dramatically suppressed by simply adding aminooxyacetate and d-malate to the cell-free system except for the H(?) positions in methionine and cysteine.
Related JoVE Video
An economical method for producing stable-isotope labeled proteins by the E. coli cell-free system.
J. Biomol. NMR
PUBLISHED: 06-28-2010
Show Abstract
Hide Abstract
Improvement of the cell-free protein synthesis system (CF) over the past decade have made it one of the most powerful protein production methods. The CF approach is especially useful for stable-isotope (SI) labeling of proteins for NMR analysis. However, it is less popular than expected, partly because the SI-labeled amino acids used for SI labeling by the CF are too expensive. In the present study, we developed a simple and inexpensive method for producing an SI-labeled protein using Escherichia coli cell extract-based CF. This method takes advantage of endogenous metabolic conversions to generate SI-labeled asparagine, glutamine, cysteine, and tryptophan, which are much more expensive than the other 16 kinds of SI-labeled amino acids, from inexpensive sources, such as SI-labeled algal amino acid mixture, SI-labeled indole, and sodium sulfide, during the CF reaction. As compared with the conventional method employing 20 kinds of SI-labeled amino acids, highly enriched uniform SI-labeling with similar labeling efficiency was achieved at a greatly reduced cost with the newly developed method. Therefore, our method solves the cost problem of the SI labeling of proteins using the CF.
Related JoVE Video
Structural insight into the zinc finger CW domain as a histone modification reader.
Structure
PUBLISHED: 04-08-2010
Show Abstract
Hide Abstract
The zinc finger CW (zf-CW) domain is a motif of about 60 residues that is frequently found in proteins involved in epigenetic regulation. Here, we determined the NMR solution structure of the zf-CW domain of the human zf-CW and PWWP domain containing protein 1 (ZCWPW1). The zf-CW domain adopts a new fold in which a zinc ion is coordinated tetrahedrally by four conserved Cys ligand residues. The tertiary structure of the zf-CW domain partially resembles that adopted by the plant homeo domain (PHD) finger bound to the histone tail, suggesting that the zf-CW domain and the PHD finger have similar functions. The solution structure of the complex of the zf-CW domain with the histone H3 tail peptide (1-10) with trimethylated K4 clarified its binding mode. Our structural and biochemical studies have identified the zf-CW domain as a member of the histone modification reader modules for epigenetic regulation.
Related JoVE Video
The effect of sodium dodecyl sulfate and anion-exchange silica gel on matrix-assisted laser desorption/ionization mass spectrometric analysis of proteins.
Rapid Commun. Mass Spectrom.
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Sodium dodecyl sulfate (SDS), an anionic surfactant, is widely used in peptide and protein sample preparation. When the sample is analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), this surfactant can often cause signal suppression. We have previously reported an on-probe sample preparation method using a suspension of anion-exchange silica gel and sinapinic acid (i.e., gel-SA suspension) as a matrix, thereby greatly improving the MALDI signal detection of the protein solutions containing SDS. In this study, we found that a certain amount of SDS enhanced the MALDI signal intensity for protein samples. This effect was also observed when using sodium decyl sulfate and sodium tetradecyl sulfate instead of SDS. Furthermore, this on-probe sample preparation method using both SDS and the gel-SA suspension improved the detection limit of protein samples in the MALDI-MS analysis by about ten-fold as compared to that of protein samples without SDS and the gel-SA suspension. This method can be applied not only to the MALDI-MS analysis of samples containing SDS, but also to the examination of proteins at femtomole levels or insoluble proteins such as membrane proteins.
Related JoVE Video
Automated system for high-throughput protein production using the dialysis cell-free method.
Protein Expr. Purif.
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14h, including 8h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).
Related JoVE Video
Solution structure of the RNA binding domain in the human muscleblind-like protein 2.
Protein Sci.
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
The muscleblind-like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1-4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre-mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH-type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel beta-sheet with the N-terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three-dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH-type zinc finger motifs in the MBNL protein family.
Related JoVE Video
Rapid biochemical synthesis of (11)C-labeled single chain variable fragment antibody for immuno-PET by cell-free protein synthesis.
Bioorg. Med. Chem.
Show Abstract
Hide Abstract
Immuno-PET is a promising approach for improved cancer diagnosis, by taking advantage of the high specificity of antibodies. Here, we present a novel cell-free protein synthesis method for preparing a positron emitter labeled-antibody. Functional anti-human EGFRvIII single chain Fv, MR1-1, was successfully labeled with carbon-11 (half-life=20.4 min) in 5 min (36% yield) by the direct incorporation of the clinical PET tracer, l-[(11)C]methionine. The product [(11)C]MR1-1 was easily and rapidly isolated with high radiochemical purity (>95%) from the reaction solution, by affinity purification. This method would be widely applicable to the preparation of radiolabeled antibodies for PET imaging.
Related JoVE Video
Simplification of the genetic code: restricted diversity of genetically encoded amino acids.
Nucleic Acids Res.
Show Abstract
Hide Abstract
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNAAla variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.