JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
Circ. J.
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production. (Circ J 2014; 78: 2594-2603).
Related JoVE Video
Elimination of Remaining Undifferentiated Induced Pluripotent Stem Cells in the Process of Human Cardiac Cell Sheet Fabrication Using a Methionine-Free Culture Condition.
Tissue Eng Part C Methods
PUBLISHED: 09-24-2014
Show Abstract
Hide Abstract
Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.
Related JoVE Video
Oxygen consumption of human heart cells in monolayer culture.
Biochem. Biophys. Res. Commun.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.
Related JoVE Video
Anisotropic Cellular Network Formation in Engineered Muscle Tissue through the Self-Organization of Neurons and Endothelial Cells.
Adv Healthc Mater
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Tissue anisotropy directed by cell sheets: Aligned myoblasts can be harvested as an anisotropic cell sheet using a micropatterned thermoresponsive substrate. Neurons and endothelial cells sandwiched between multiple anisotropic cell sheets self-organize oriented cellular networks in the tissue construct. This simple tissue engineering technique is useful for creation of biomimetic microstructures in complex tissue, required for future advances in regenerative medicine.
Related JoVE Video
Cell sheet technology for cardiac tissue engineering.
Methods Mol. Biol.
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
In this chapter, we describe the methods for the fabrication and transfer/transplantation of 3D tissues by using cell sheet technology for cardiac tissue regeneration. A temperature-responsive culture surface can be fabricated by grafting a temperature-responsive polymer, poly(N-isopropylacrylamide), onto a polystyrene cell culture surface. Cells cultured confluently on such a culture surface can be recovered as an intact cell sheet, and functional three-dimensional (3D) tissues can then be easily fabricated by layering the recovered cell sheets without any scaffolds or complicated manipulation. Cardiac cell sheets, myoblast sheets, mesenchymal stem cell sheets, cardiac progenitor cell sheets, etc., which are prepared from temperature-responsive culture surfaces, can be easily transplanted onto heart tissues of animal models, and those cell sheet constructs enhance the cell transplant efficiency, resulting in the induction of effective therapy.
Related JoVE Video
Real-time, noninvasive optical coherence tomography of cross-sectional living cell-sheets in vitro and in vivo.
J. Biomed. Mater. Res. Part B Appl. Biomater.
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Cell sheet technology has a history of application in regenerating various tissues, having successfully completed several clinical trials using autologous cell sheets. Tomographic analysis of living cell sheets is an important tool in the field of cell sheet-based regenerative medicine and tissue engineering to analyze the inner structure of layered living cells. Optical coherence tomography (OCT) is commonly used in ophthalmology to noninvasively analyze cross-sections of target tissues at high resolution. This study used OCT to conduct real-time, noninvasive analysis of living cell sheet cross sections. OCT showed the internal structure of cell sheets in tomographic images synthesized with backscatter signals from inside the living cell sheet without invasion or damage. OCT observations were used to analyze the static and dynamic behaviors of living cell sheets in vitro and in vivo including (1) the harvesting process of a C2C12 mouse skeletal myoblast sheet from a temperature-responsive culture surface; (2) cell-sheet adhesion onto various surfaces including a culture surface, a synthetic rubber glove, and the dorsal subcutaneous tissue of rats; and (3) the real-time propagation of beating rat cardiac cells within cardiac cell sheets. This study showed that OCT technology is a powerful tool in the field of cell sheet-based regenerative medicine and tissue engineering. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
Related JoVE Video
Visual outcomes of endovascular and microsurgical treatment for large or giant paraclinoid aneurysms.
Acta Neurochir (Wien)
PUBLISHED: 06-17-2014
Show Abstract
Hide Abstract
The optimal treatment for large or giant paraclinoid aneurysms is still controversial. The present study evaluated the results of endovascular coiling and microsurgical clipping with special reference to visual outcomes.
Related JoVE Video
Superficial Siderosis of the Central Nervous System Caused by Hemorrhagic Intraventricular Craniopharyngioma: Case Report and Literature Review.
Neurol. Med. Chir. (Tokyo)
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Superficial siderosis is a rare condition caused by hemosiderin deposits in the central nervous system (CNS) due to prolonged or recurrent low-grade bleeding into the cerebrospinal fluid (CSF). CNS tumor could be one of the sources of bleeding, both pre- and postoperatively. We report an extremely rare case of superficial siderosis associated with purely third ventricle craniopharyngioma, and review previously reported cases of superficial siderosis associated with CNS tumor. A 69-year-old man presented with headache, unsteady gait, blurred vision, and progressive hearing loss. Brain magnetic resonance (MR) imaging with gadolinium revealed a well enhanced, intraventricular mass in the anterior part of the third ventricle. T2*-weighted gradient echo (GE) MR imaging revealed a hypointense rim around the brain particularly marked within the depth of the sulci. Superficial siderosis was diagnosed based on these findings. The tumor was diffusely hypointense on T2*-weighted GE imaging, indicating intratumoral hemorrhage. The lateral ventricles were dilated, suggesting hydrocephalus. [(18)F]fluorodeoxyglucose positron emission tomography revealed increased uptake in the tumor. The whole brain surface appeared dark ocher at surgery. Histological examination showed the hemorrhagic tumor was papillary craniopharyngioma. His hearing loss progressed after removal of the tumor. T2*-weighted GE MR imaging demonstrated not only superficial siderosis but also diffuse intratumoral hemorrhage in the tumor. Superficial siderosis and its related symptoms, including hearing loss, should be considered in patients with hemorrhagic tumor related to the CSF space. Purely third ventricle craniopharyngioma rarely has hemorrhagic character, which could cause superficial siderosis and progressive hearing loss.
Related JoVE Video
Historical control data on developmental toxicity studies in rodents.
Congenit Anom (Kyoto)
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
Historical control data on rodent developmental toxicity studies, performed between 1994 and 2010, were obtained from 19 laboratories in Japan, including 10 pharmaceutical and chemical companies and nine contract research organizations. Rats, mice, and hamsters were used for developmental toxicity studies. Data included maternal reproductive findings at terminal cesarean sections and fetal findings including the spontaneous incidences of external, visceral, and skeletal anomalies. No noticeable differences were observed in maternal reproductive data between laboratories. Inter-laboratory variations in the incidences of fetuses with anomalies appeared to be due to differences in the selection of observation parameters, observation criteria, classification of the findings, and terminology of fetal alterations. Historical control data are useful for the appropriate interpretation of experimental results and evaluation of the effects of chemical on reproductive and developmental toxicities.
Related JoVE Video
Stripe-Patterned Thermo-responsive Cell Culture Dish for Cell Separation without Cell Labeling.
Small
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 ?m striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry.
Related JoVE Video
Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration.
Sci Rep
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheets, which showed advantageous therapeutic effects in infarcted hearts. The protocol adds to a previous differentiation protocol of CMs by using stage-specific supplementation of vascular endothelial cell growth factor for the additional induction of vascular cells. Using this cell sheet technology, we successfully generated physically integrated cardiac tissue sheets (hiPSC-CTSs). HiPSC-CTS transplantation to rat infarcted hearts significantly improved cardiac function. In addition to neovascularization, we confirmed that engrafted human cells mainly consisted of CMs in >40% of transplanted rats four weeks after transplantation. Thus, our HiPSC-CTSs show promise for cardiac regenerative therapy.
Related JoVE Video
Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering.
Biochem. Biophys. Res. Commun.
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Uterus is a female specific reproductive organ and plays critical roles in allowing embryo to grow. Therefore, the endometrial disorders lead to female infertility. Hence, the regeneration of endometrium allowing fertilized ovum to implant might be valuable in the field of fertility treatment. Recently, cell sheet engineering using a temperature-responsive culture dish has advanced in regenerative medicine. With this technology, endometrial cells were harvested as a contiguous cell sheet by reducing temperature. Firstly, mouse endometrial cell sheets were re-cultured for 3 days to evaluate the function. Histological analyses revealed that endometrial epithelial cell-specific cytokeratin 18 and female-specific hormone receptors, estrogen receptor ? and progesterone receptor, were expressed. Furthermore, endometrial epithelial cells constructed epithelial layer at the apical side. Then, endometrial cell sheets from green-fluorescent-protein rat cells were transplanted onto the buttock muscle of nude rat for evaluating the function in vivo. Histological analyses showed that endometrial cell sheets reconstructed endometrium-like tissue, which was found to form uterus-specific endometrial glands having hormonal receptor to estrogen. In this study, endometrial cell sheets were speculated to contribute to the regeneration of functional endometrium as a new therapy.
Related JoVE Video
In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension.
J Tissue Eng Regen Med
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Cell sheets have shown a remarkable ability for repairing damaged myocardium in clinical and preclinical studies. Although they demonstrate a high degree of viability as engrafted cells in vivo, the reason behind their survivability is unclear. In this study, the survival and vascularization of rat cardiac cell sheets transplanted in the subcutaneous tissue of athymic rats were investigated temporally. The cell sheets showed significantly higher survival than cell suspensions for up to 12 months, using an in vivo bioluminescence imaging system to detect luciferase-positive transplanted cells. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay also showed a smaller number of apoptotic cells in the cell sheets than in the cell suspensions at 1 day. Rapid vascular formation and maturation were observed inside the cell sheets using an in vivo imaging system. Leaky vessels appeared at 6 h, red blood cells flowing through functional vessels appeared at 12 h, and morphologically matured vessels appeared at 7 days. In addition, immunostaining of cell sheets with nerve/glial antigen-2 (NG2) showed that vessel maturity increased over time. Interestingly, these results correlated with the dynamics of cell sheet mRNA expression. Genes related to endothelial cells (ECs) proliferation, migration and vessel sprouting were highly expressed within 1 day, and genes related to pericyte recruitment and vessel maturation were highly expressed at 3 days or later. This suggested that the cell sheets could secrete appropriate angiogenic factors in a timely way after transplantation, and this ability might be a key reason for their high survival. Copyright © 2014 John Wiley & Sons, Ltd.
Related JoVE Video
Toward the development of bioengineered human three-dimensional vascularized cardiac tissue using cell sheet technology.
Int Heart J
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Bioengineered cardiac tissue is expected to be applied to regenerative medicine and tissue models for disease research and drug screening. Recent and rapid progress in technologies for tissue engineering approaches, including cell sheet technology, vascularization of thickened tissues, and large-scale expansion and differentiation of pluripotent stem cells, is about to realize the fabrication of human three-dimensional cardiac tissue. However, a remaining challenge is to make these fabricated tissues closely resemble the phenotypes, and to perform the functions of human cardiac tissue.
Related JoVE Video
Cell sheet engineering for regenerative medicine: current challenges and strategies.
Biotechnol J
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Substantial progress made in the areas of stem cell research and regenerative medicine has provided a number of innovative methods to repair or regenerate defective tissues and organs. Although previous studies regarding regenerative medicine, especially those involving induced pluripotent stem cells, have been actively promoted in the past decade, there remain some challenges that need to be addressed in order to enable clinical applications. Designed for use in clinical applications, cell sheet engineering has been developed as a unique, scaffold-free method of cell processing utilizing temperature-responsive cell culture vessels. Clinical studies using cell sheets have shown positive outcomes and will be translated into clinical practice in the near future. However, several challenges stand in the way of the industrialization of cell sheet products and the widespread acceptance of regenerative medicine based on cell sheet engineering. This review describes current strategies geared towards the realization of the regenerative medicine approach.
Related JoVE Video
Automatic fabrication of 3-dimensional tissues using cell sheet manipulator technique.
Biomaterials
PUBLISHED: 11-15-2013
Show Abstract
Hide Abstract
Automated manufacturing is a key for tissue-engineered therapeutic products to become common-place and economical. Here, we developed an automatic cell sheet stacking apparatus to fabricate 3-dimensional tissue-engineered constructs exploiting our cell sheet manipulator technique, where cell sheets harvested from temperature-responsive culture dishes are stacked into a multilayered cell sheet. By optimizing the stacking conditions and cell seeding conditions, the apparatus was eventually capable of reproducibly making five-layer human skeletal muscle myoblast (HSMM) sheets with a thickness of approximately 70-80 ?m within 100 min. Histological sections and confocal topographies of the five-layer HSMM sheets revealed a stratified structure with no delamination. In cell counts using trypsinization, the live cell numbers in one-, three- and five-layer HSMM sheets were equivalent to the seeded cell numbers at 1 h after the stacking processes; however, after subsequent 5-day static cultures, the live cell numbers of the five-layered HSMM sheets decreased slightly, while one- and three-layer HSMM sheets maintained their live cell numbers. This suggests that there are thickness limitations in maintaining tissues in a static culture. We concluded that by combining our cell sheet manipulator technique and industrial robot technology we can create a secure, cost-effective manufacturing system able to produce tissue-engineered products from cell sheets.
Related JoVE Video
Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.
Arch. Pharm. Res.
PUBLISHED: 09-30-2013
Show Abstract
Hide Abstract
Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
Related JoVE Video
Hydrophobized thermoresponsive copolymer brushes for cell separation by multistep temperature change.
Biomacromolecules
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
For preparing a thermally modulated biointerface that separates cells without the modification of cell surfaces for regenerative medicine and tissue engineering, poly(N-isopropylacrylamide-co-butyl methacrylate) (P(IPAAm-co-BMA), thermo-responsive hydrophobic copolymer brushes with various BMA composition were formed on glass substrate through a surface-initiated atom transfer radical polymerization (ATRP). Characterization of the prepared surface was performed by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR/FT-IR), and gel-permeation chromatography (GPC) measurement. Prepared copolymer brush surfaces were characterized by observing the adhesion (37 °C) and detachment (20 or 10 °C) of four types of human cells: human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts (NHDFs), human aortic smooth muscle cells (SMCs), and human skeletal muscle myoblast cells (HSMMs). HUVECs and NHDFs exhibited their effective detachment temperature at 20 and 10 °C, respectively. Using cells intrinsic temperature sensitivity for detachment from the copolymer brush, a mixture of green fluorescent protein (GFP)-expressing HUVECs (GFP-HUVECs) and NHDFs was separated.
Related JoVE Video
Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart.
Circulation
PUBLISHED: 09-14-2013
Show Abstract
Hide Abstract
Transplantation of cardiomyocytes that are derived from human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) shows promise in generating new functional myocardium in situ, whereas the survival and functionality of the transplanted cells are critical in considering this therapeutic impact. Cell-sheet method has been used to transplant many functional cells; however, potential ischemia might limit cell survival. The omentum, which is known to have rich vasculature, is expected to be a source of blood supply. We hypothesized that transplantation of hiPS-CM cell sheets combined with an omentum flap may deliver a large number of functional hiPS-CMs with enhanced blood supply.
Related JoVE Video
Cell sheet-based cardiac tissue engineering.
Anat Rec (Hoboken)
PUBLISHED: 09-13-2013
Show Abstract
Hide Abstract
Tissue engineering is indispensable for the advancement of regenerative medicine and the development of tissue models. Cell sheet-based method is one the promising strategies for cardiac tissue engineering. To date, cell sheet transplantation using wide variety of cells has been performed for the treatment of various heart diseases. These cell sheet transplantations have shown to ameliorate cardiac dysfunction and improve symptoms of heart failure. Recent progress of the technologies on the layering of cardiac cell sheets accompanied with vascularization and the large scale cultivation system of embryonic stem cell and induced pluripotent stem cell is about to turn the fabrication of thickened human cardiac tissue for transplant and tissue models into reality. Anat Rec, 297:65-72. 2014. © 2013 Wiley Periodicals, Inc.
Related JoVE Video
Expression profiles of angiogenesis-related proteins in prevascular three-dimensional tissues using cell-sheet engineering.
Biomaterials
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The prefabrication of endothelial cell network assembly (ECNA) in tissue-engineer multi-layered cell-sheets, known as in vitro prevascularization, is beneficial strategy for inducing anastomosis with the host vasculature after transplantation. However, the mechanisms of neovascularization via transplanted prevascular cell-sheets are unknown. This study investigated neovascularization process and angiogenesis-related protein secretion by prevascular cell-sheets. Prevascular (ECNA-positive) double-layered fibroblast (FB) sheets were created by sandwiching human aortic endothelial cells (HAECs) between two human dermal FB sheets. As the ECNA-negative control, FBs-sandwiching double-layered FB sheets were used. Two types of cell-sheets were subcutaneously transplanted into immune-deficient rats. At 3 days after transplantation, induction of the newly-formed microvessels near the host vasculature was observed in the ECNA-positive cell-sheet. In contrast, no neovessel was observed in the ECNA-negative cell-sheet at 1 week after transplantation. Consequently, the secretion of angiogenesis-related proteins in conditioned media of each cell-sheet cultured for 3 days were compared. The levels of hepatocyte growth factor (HGF), placenta growth factor (PlGF) and matrix metalloproteinase-9 (MMP-9) significantly increased in the ECNA-positive cell-sheets. These results suggested that these molecules might involve in neovascularization after the transplantation of prevascular cell-sheets. These findings may contribute to understanding its mechanism.
Related JoVE Video
Rate control of cell sheet recovery by incorporating hydrophilic pattern in thermoresponsive cell culture dish.
J Biomed Mater Res A
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
Thready stripe-polyacrylamide (PAAm) pattern was fabricated on a thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) surface, and their surface properties were characterized. A PIPAAm surface spin-coated with positive photoresist was irradiated through a 5 µm/5 µm or a 10 µm/10-µm black and white striped photomask, resulting in the radical polymerization of AAm on the photoirradiated area. After staining with Alexa488 bovine serum albumin, the stripe-patterned surface was clearly observed and the patterned surface was also observed by a phase contrast image of an atomic force microscope. NIH-3T3 (3T3) single cells were able to be cultured at 37°C on the patterned surfaces as well as on a PIPAAm surface without pattern, and the detachment of adhered cells was more rapidly from the patterned surface after reducing temperature. Furthermore, the rate of detachment of 3T3 confluent cell sheet on the patterned surface was accelerated, compared with on a conventional PIPAAm surface under the static condition. The rate control of cell sheet recovery should contribute the preservations of cell phenotype and biological functions of cell sheet for applying to clinical trials. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Related JoVE Video
Sympathetic innervation induced in engrafted engineered cardiomyocyte sheets by glial cell line derived neurotrophic factor in vivo.
Biomed Res Int
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF). GFP-transgene (control group) or GDNF overexpressing (GDNF group) engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.
Related JoVE Video
A device for the rapid transfer/transplantation of living cell sheets with the absence of cell damage.
Biomaterials
PUBLISHED: 06-10-2013
Show Abstract
Hide Abstract
In this study, we developed a device that could easily, rapidly, and completely transfer cell sheets from one material to another or transplant cell sheets onto the dorsal subcutaneous tissues of rats without leaving residual cells. Because the manipulation is as simple as pipetting, technical expertise is not required to transfer cell sheets very rapidly (the transfer time was 3.7 ± 1.6 s) using the device compared with that of a conventional method using a pipette (430 ± 180 s). After transfer by the device, C2C12 skeletal myoblast sheets showed active cell metabolism, cell viability, and very high production of vascular endothelial growth factor and stromal-derived factor-1?, indicating transfer without cell damage. Cardiac cell sheets after transfer showed spontaneous and synchronous beating, indicating intact cell-cell junctions and ion channel proteins on the cell surface. In addition, the device allowed us to transfer C2C12 cell sheets onto soft, rugged and curved surfaces such as human hands. Furthermore, cardiac cell sheets adhered rapidly and tightly onto the dorsal subcutaneous tissues of rats. This transfer/transplantation device may be a powerful tool in cell sheet-based tissue engineering and regenerative medicine.
Related JoVE Video
Vascularization in 3D tissue using cell sheet technology.
Regen Med
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
Tissue engineering is a field of study unto itself, but in reality, it is a fusion of medicine, pharmacology, chemistry, cell biology, molecular biology and engineering. The field has been developing at an ever-increasing pace and already provides benefits to regenerative medicine in areas such as the skin and cornea. However, the problem facing all of these technologies is the diffusion limitation, which has impeded the fabrication of thicker 3D tissue. Overcoming this problem requires vascularization of 3D tissue, which is critical to any future advances. Here, we introduce our own cell sheet technology and compare it with other technologies for the fabrication of vascularized 3D tissue.
Related JoVE Video
The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue.
Biomaterials
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
In some parts of native tissues, the orientation of cells and/or extracellular matrixes is well organized. We know that because anisotropy produces important tissue functions, an appropriate anisotropy needs to be designed to biomimetically construct complex tissue. Here, we show the unique features of anisotropic myoblast sheets for organizing the three-dimensional (3D) orientation of myoblasts and myotubes. Utilizing a micropatterned thermoresponsive surface, human skeletal muscle myoblasts were aligned on the surface, and manipulated as a single anisotropic cell sheet by reducing the culture temperature. Consequently, layering of anisotropic myoblast sheets using gelatin gel allowed 3D myotube constructs to be built up with the desired anisotropy. We also discovered a surprising myoblast behavior. An anisotropic cell sheet placed on top of other cell sheets in fabricating thick tissue was able to change the cell orientation in several layered cell sheets underneath. This self-organization is believed to provide the uniqueness required in designing 3D cell orientation architecture for reconstructed muscle tissue.
Related JoVE Video
Improvement of Cardiac Stem Cell-Sheet Therapy for Chronic Ischemic Injury by Adding Endothelial Progenitor Cell Transplantation: Analysis of Layer-Specific Regional Cardiac Function.
Cell Transplant
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
BACKGROUND: The transplantation of cardiac stem cell sheets (CSC sheets) is apromising therapeutic strategy for ischemic cardiomyopathy, although potential ischemia inthe transplanted area remains a problem. Injected endothelial progenitor cells (EPCs) canreportedly induce angiogenesis in the injected area. We hypothesized that concomitant CSCsheet transplantation and EPC injection might show better therapeutic effects for chronicischemic injury model than the transplantation of CSC sheets alone.METHODS: Scaffold-free CSC-sheets were generated from human c-kit-positive heartderivedcells. A porcine chronic ischemic injury model was generated by placing an ameroidconstrictor around the left coronary artery for 4 weeks. The animals then underwent a shamoperation, epicardial transplantation of CSC sheet over the ischemic area, intramyocardialinjection of EPCs into the ischemic and peri-ischemic area, or CSC-sheet transplantation plusEPC injection. The efficacy of each treatment was then assessed for 2 months.RESULTS: Speckle-tracking echocardiography was used to dissect the layer-specificregional systolic function by measuring the radial strain (RS). The epicardial RS in theischemic area was similarly greater after treatment with the CSC-derived cell-sheets alone(19±5%) or in combination with EPC injection (20±5%) compared with the EPC only(9±4%) or sham (7±1%) treatment. The endocardial RS in the ischemic area was greatestafter the combined treatment (14±1%), followed by EPC only (12±1%), compared to theCSC only (11±1%) and sham (9±1%) treatments. Consistently, either epicardial CSC-sheetimplantation or intramyocardial EPC injection yielded increased capillary number andreduced cardiac fibrosis in the ischemic epicardium or endocardium, respectively.Concomitant EPC injection induced the migration of transplanted CSCs into the hostCopyright © 2013 Cognizant Communication CorporationCT-0968 Cell Transplantation Epub; provisional acceptance 02/27/2013 3myocardium, leading to further neovascularization and reduced fibrosis in the ischemicendocardium, compared to the CSC-sole therapy.CONCLUSION: Transplantation of CSC-sheets induced significant functional recovery ofthe ischemic epicardium, and concomitant EPC transplantation elicited transmuralimprovement in chronic ischemic injury.
Related JoVE Video
Hormone supplying renal cell sheet in vivo produced by tissue engineering technology.
Biores Open Access
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Regenerative medicine is a new medical field and is expected to have a profoundly positive effect in curing difficult-to-treat diseases. Cell sheet fabrication is an important tissue engineering technology used in regenerative medicine. This study investigated the creation of a hormone-releasing tissue using cell sheet technology, which could be utilized in future therapy for chronic renal disease. Renal cell sheets were fabricated on a temperature-responsive cell culture surface with primary renal cells from adult porcine kidney. These sheets contained various kinds of renal cells that showed cyst-like formation. An important renal function is the synthesis of 1,25-dihydroxyvitamin D3, and this was confirmed in the cell sheets in vitro. Erythropoietin (EPO) production is another important renal function. This ability was also observed in the renal cell sheets in vitro, and then again after transplantation in a nude rat. In particular, the relative expression of EPO mRNA increased more under cell sheet culture conditions compared with exponential cell growth conditions. Histological analysis of the implanted renal cell sheets showed them to be Dolichos biflorus agglutinin-positive and to have regenerated renal tubular-like morphology. These results indicated that both functional and morphological regenerative renal tissues were fabricated by cell sheet technology. This study introduces a hormone-supplying treatment for renal dysfunctional diseases using engineered renal tissues. Moreover, since our renal cell sheets developed renal tubular-like structures in vivo, it holds promise for fabricating artificially engineered true renal tissue in the future.
Related JoVE Video
Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.
J Tissue Eng Regen Med
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3?days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12?days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Related JoVE Video
Cell sheet transplantation for heart tissue repair.
J Control Release
PUBLISHED: 02-24-2013
Show Abstract
Hide Abstract
Cell transplantation is attracting considerable attention as the next-generation therapy for treatment of cardiovascular diseases. We have developed cell sheet engineering as a type of scaffold-less tissue engineering for application in myocardial tissue engineering and the repair of injured heart tissue by cell transplantation. Various types of cell sheet transplantation have improved cardiac function in animal models and clinical settings. Furthermore, cell-based tissue engineering with human induced pluripotent stem cell technology is about to create thick vascularized cardiac tissue for cardiac grafts and heart tissue models. In this review, we summarize the current cardiac cell therapies for treating heart failure with cell sheet technology and cell sheet-based tissue engineering.
Related JoVE Video
Comparison of angiogenic potential between prevascular and non-prevascular layered adipose-derived stem cell-sheets in early post-transplanted period.
J Biomed Mater Res A
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Layered adipose-derived stem cell (ADSC) sheet transplantation is attracting attention as a new stem cell therapeutic strategy for damaged hearts. To prolong the function of tissue-engineered constructs after transplantation, a rapid and sufficient vascularization of engrafted tissue is essential. The in vitro formation of network structures derived from endothelial cells (ECs) in grafts before transplantation contributes to the induction of functional anastomosis in vivo. This study compared the angiogenic potential of ADSC sheets containing dissociated ECs (non-prevascular cell-sheets) and networked ECs (prevascular cell-sheets) after transplantation. For preparing the two different types of ECs-containing layered cell-sheets, human umbilical vein endothelial cells (HUVECs) were sandwiched between two human ADSC sheets. Non-prevascular cell-sheets were obtained immediately after sandwiching without further cultivation. Prevascular cell-sheets were harvested form temperature-responsive culture dishes following re-cultivation for allowing them to form an EC network structure. In transplant experiments in the subcutaneous tissues of immune-deficient rat for 4 days, prevascular cell-sheets were observed to promote neovascularization with HUVEC-lined microvessels. In contrast, neovessels were hardly observed in non-prevascular cell-sheets. These results suggested that prefabricated EC network in layered cell-sheet was effective for making a rapid connection to the host vasculature in the early post-transplanted period. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 358-365, 2014.
Related JoVE Video
In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels.
Nat Commun
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications.
Related JoVE Video
In vitro engineering of vascularized tissue surrogates.
Sci Rep
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models.
Related JoVE Video
Endothelial cell behavior inside myoblast sheets with different thickness.
Biotechnol. Lett.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Using a cell sheet stacking method, we developed an in vitro culture system in which green fluorescent protein expressing human umbilical vein endothelial cells (GFP-HUVECs) were cultured under human skeletal muscle myoblast (HSMM) sheets with different layer numbers. Our aim in developing this system was to examine the different endothelial behaviors in the cell sheet. During 96 h of incubation, in monolayer HSMM sheet, HUVECs quickly reached the top of the cell sheet and detached. In three-layered HSMM sheet, HUVECs also migrated to the top layer and formed island-shaped aggregates. In five-layered HSMM sheet, HUVECs migrated into the middle of the cell sheet and formed net-shaped aggregates. In seven-layered HSMM sheet, HUVECs migrated in the basal of the cell sheet and formed sparse net-shaped aggregates. The thickness of the HSMM sheet, which can be controlled by the layer number of the cell sheet, is therefore an important parameter that affects the migration time, encounters, localization, and morphology of HUVECs inside the HSMM sheet.
Related JoVE Video
Chondrocyte Differentiation of Human Endometrial Gland-Derived MSCs in Layered Cell Sheets.
ScientificWorldJournal
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Recently, regenerative medicine using engineered three-dimensional (3D) tissues has been focused. In the fields of cell therapy and regenerative medicine, mesenchymal stem cells (MSCs) are attractive autologous cell sources. While, in bioengineered tissues, a 3D environment may affect the differentiation of the stem cells, little is known regarding the effect of 3D environment on cellular differentiation. In this study, MSC differentiation in in vitro 3D tissue models was assessed by human endometrial gland-derived MSCs (hEMSCs) and cell sheet technology. hEMSC sheets were layered into cell-dense 3D tissues and were cultured on porous membranes. The tissue sections revealed that chondrocyte-like cells were found within the multilayered cell sheets even at 24?h after layering. Immunostainings of chondrospecific markers were positive within those cell sheet constructs. In addition, sulfated glycosaminoglycan accumulation within the tissues increased in proportion to the numbers of layered cell sheets. The findings suggested that a high cell density and hypoxic environment in 3D tissues by layering cell sheets might accelerate a rapid differentiation of hEMSCs into chondrocytes without the help of chondro-differentiation reagents. These tissue models using cell sheets would give new insights to stem cell differentiation in 3D environment and contribute to the future application of stem cells to cartilage regenerative therapy.
Related JoVE Video
Noninvasive evaluation of contractile behavior of cardiomyocyte monolayers based on motion vector analysis.
Tissue Eng Part C Methods
PUBLISHED: 10-11-2011
Show Abstract
Hide Abstract
A noninvasive method for the characterization of cardiomyocyte contractile behavior is presented. Light microscopic video images of cardiomyocytes were captured with a high-speed camera, and motion vectors (which have a velocity dimension) were calculated with a high spatiotemporal resolution using a block-matching algorithm. This method could extract contraction and relaxation motions of cardiomyocytes separately and evaluate characteristics such as the beating rate, orientation of contraction, beating cooperativity/homogeneity in the monolayer, and wave propagation of impulses. Simultaneous phase-contrast imaging and calcium (Ca2+) fluorescence measurements confirmed that the timing of the maximum shortening velocity of cardiomyocytes correlated well with intracellular Ca2+ transients. Based on our analysis, gap junction inhibitors, 1-heptanol (2?mM) or 18-?-glycyrrhetinic acid (30??M), resulted in clear changes in beating cooperativity and the propagation pattern of impulses in the cardiomyocyte monolayer. Additionally, the time dependence of the motion vector length indicated a prolonged relaxation process in the presence of potassium (K+) channel blockers, dl-sotalol (1??M), E-4031 (100?nM), or terfenadine (100?nM), reflecting the prolonged QT (Q wave and T wave) interval of cardiomyocytes. Effects of autonomic agents (acetylcholine or epinephrine [EPI]) or EPI and propranolol on cardiomyocytes were clearly detected by the alterations of beating rate and the motion vector length in contraction and relaxation processes. This method was noninvasive and could sensitively evaluate the contractile behavior of cardiomyocytes; therefore, it may be used to study and/or monitor cardiomyocyte tissue during prolonged culture periods and in screens for drugs that may alter the contraction of cardiomyocytes.
Related JoVE Video
Induced adipocyte cell-sheet ameliorates cardiac dysfunction in a mouse myocardial infarction model: a novel drug delivery system for heart failure.
Circulation
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
A drug delivery system that constitutively and effectively retains cardioprotective reagents in the targeted myocardium has long been sought to treat acute myocardial infarction. We hypothesized that a scaffold-free induced adipocyte cell-sheet (iACS), transplanted on the surface of the heart, might intramyocardially secrete multiple cardioprotective factors including adiponectin (APN), consequently attenuating functional deterioration after acute myocardial infarction.
Related JoVE Video
Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection.
Tissue Eng Part A
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
Regenerative therapies have currently emerged as one of the most promising treatments for repair of the damaged heart. Recently, numerous researchers reported that isolated cell injection treatments can improve heart function in myocardial infarction models. However, significant cell loss due to primary hypoxia or cell wash-out and difficulty to control the location of the grafted cells remains problem. As an attempt to overcome these limitations, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cells (two-dimensional), cell sheets, to construct three-dimensional cell-dense tissues. Cell sheet transplantation has been able to recover damaged heart function. However, no detailed analysis for transplanted cell survival has been previously performed. The present study compared the survival of cardiac cell sheet transplantation to direct cell injection in a rat myocardial infarction model. Luciferase-expressing neonatal rat cardiac cells were harvested as cell sheets from temperature-responsive culture dishes. The transplantation of cell sheets was compared to the direct injection of isolated cells dissociated with trypsin-ethylenediaminetetraacetic acid. These grafts were transplanted to infarcted rat hearts and cardiac function was assessed by echocardiography at 2 and 4 weeks after transplantation. In vivo bioluminescence and histological analyses were performed to examine cell survival. Cell sheet transplantation consistently yielded greater cell survival than cell injection. Immunohistochemistry revealed that cardiac cell sheets existed over the infarcted area as an intact layer. In contrast, the injected cells were scattered with relatively few cardiomyocytes in the infarcted areas. Four weeks after transplantation, cardiac function was also significantly improved in the cell sheet transplantation group compared with the cell injection. Twenty-four hours after cell grafting, significantly greater numbers of mature capillaries were also observed in the cardiac cell sheet transplantation. Additionally, the numbers of apoptotic cells with deterioration of integrin-mediated attachment were significantly lower after cardiac cell sheet transplantation. In accordance with increased cell survival, cardiac function was significantly improved after cardiac cell sheet transplantation in comparison to cell injection. Cell sheet transplantation can repair damaged hearts through improved cell survival and should become a promising therapy in cardiovascular regenerative medicine.
Related JoVE Video
A crucial role of activin A-mediated growth hormone suppression in mouse and human heart failure.
PLoS ONE
PUBLISHED: 08-21-2011
Show Abstract
Hide Abstract
Infusion of bone marrow-derived mononuclear cells (BMMNC) has been reported to ameliorate cardiac dysfunction after acute myocardial infarction. In this study, we investigated whether infusion of BMMNC is also effective for non-ischemic heart failure model mice and the underlying mechanisms. Intravenous infusion of BMMNC showed transient cardioprotective effects on animal models with dilated cardiomyopathy (DCM) without their engraftment in heart, suggesting that BMMNC infusion improves cardiac function via humoral factors rather than their differentiation into cardiomyocytes. Using conditioned media from sorted BMMNC, we found that the cardioprotective effects were mediated by growth hormone (GH) secreted from myeloid (Gr-1(+)) cells and the effects was partially mediated by signal transducer and activator of transcription 3 in cardiomyocytes. On the other hand, the GH expression in Gr-1(+) cells was significantly downregulated in DCM mice compared with that in healthy control, suggesting that the environmental cue in heart failure might suppress the Gr-1(+) cells function. Activin A was upregulated in the serum of DCM models and induced downregulation of GH levels in Gr-1(+) cells and serum. Furthermore, humoral factors upregulated in heart failure including angiotensin II upregulated activin A in peripheral blood mononuclear cells (PBMNC) via activation of NF?B. Similarly, serum activin A levels were also significantly higher in DCM patients with heart failure than in healthy subjects and the GH levels in conditioned medium from PBMNC of DCM patients were lower than that in healthy subjects. Inhibition of activin A increased serum GH levels and improved cardiac function of DCM model mice. These results suggest that activin A causes heart failure by suppressing GH activity and that inhibition of activin A might become a novel strategy for the treatment of heart failure.
Related JoVE Video
Evaluation of vertical cell fluidity in a multilayered sheet of skeletal myoblasts.
J. Biosci. Bioeng.
PUBLISHED: 08-19-2011
Show Abstract
Hide Abstract
The procedure for fabricating a multilayered cell sheet has been developed by combining multiple sheets using a thermo-responsive surface and stamp system. Confocal laser scanning microscopy revealed that the fluidity of a multilayered sheet of skeletal myoblasts could be estimated as vertical diffusivity and changed upon addition of dermal fibroblasts.
Related JoVE Video
Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation.
Biomaterials
PUBLISHED: 07-20-2011
Show Abstract
Hide Abstract
Normal human dermal fibroblasts were aligned on micropatterned thermoresponsive surfaces simply by one-pot cell seeding. After they proliferated with maintaining their orientation, anisotropic cell sheets were harvested by reducing temperature to 20 °C. Surprisingly, the cell sheets showed different shrinking rates between vertical and parallel sides of the cell alignment (aspect ratio: approx. 3: 1), because actin fibers in the cell sheets were oriented with the same direction. The control of cell alignment provided not only a physical anisotropy but also biological impacts to the cell sheet. Vascular endothelial growth factor (VEGF) secreted by aligned fibroblasts was increased significantly, whereas transforming growth factor-?1 (TGF-?1) expression was the same level in anisotropic cell sheets as cell sheets having random cell orientations. Furthermore, although the amount of deposited type ? collagen was different non-significantly onto between cell sheets with and without controlled cell alignment, collagen deposited onto fibroblasts sheets with cell alignment also showed anisotropy, verified by a fluorescence imaging analysis. The physical and biological anisotropies of cell sheets were potentially useful to construct biomimetic tissues that were organized by aligned cells and/or extracellular matrix (ECM) including collagen in cell sheet-based regenerative medicine. Furthermore, due to the unique thermoresponsive property, the anisotropic cell sheets were successfully manipulated using a gelatin-coated plunger and were layered with maintaining their cell alignment. The combined use of the anisotropic cell sheet and cell sheet manipulation technique promises to create complex tissue that requires the three-dimensional control of their anisotropies, as one of the next-generation cell sheet technologies.
Related JoVE Video
Regenerative therapies using cell sheet-based tissue engineering for cardiac disease.
Cardiol Res Pract
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
At present, cardiac diseases are a major cause of morbidity and mortality in the world. Recently, a cell-based regenerative medicine has appeared as one of the most potential and promising therapies for improving cardiac diseases. As a new generational cell-based regenerative therapy, tissue engineering is focused. Our laboratory has originally developed cell sheet-based scaffold-free tissue engineering. Three-dimensional myocardial tissue fabricated by stacking cardiomyocyte sheets, which are tightly interconnected to each other through gap junctions, beats simultaneously and macroscopically and shows the characteristic structures of native heart tissue. Cell sheet-based therapy cures the damaged heart function of animal models and is clinically applied. Cell sheet-based tissue engineering has a promising and enormous potential in myocardial tissue regenerative medicine and will cure many patients suffering from severe cardiac disease. This paper summarizes cell sheet-based tissue engineering and its satisfactory therapeutic effects on cardiac disease.
Related JoVE Video
Myocardial tissue engineering: toward a bioartificial pump.
Cell Tissue Res.
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
Regenerative therapies, including cell injection and bioengineered tissue transplantation, have the potential to treat severe heart failure. Direct implantation of isolated skeletal myoblasts and bone-marrow-derived cells has already been clinically performed and research on fabricating three-dimensional (3-D) cardiac grafts using tissue engineering technologies has also now been initiated. In contrast to conventional scaffold-based methods, we have proposed cell sheet-based tissue engineering, which involves stacking confluently cultured cell sheets to construct 3-D cell-dense tissues. Upon layering, individual cardiac cell sheets integrate to form a single, continuous, cell-dense tissue that resembles native cardiac tissue. The transplantation of layered cardiac cell sheets is able to repair damaged hearts. As the next step, we have attempted to promote neovascularization within bioengineered myocardial tissues to overcome the longstanding limitations of engineered tissue thickness. Finally, as a possible advanced therapy, we are now trying to fabricate functional myocardial tubes that may have a potential for circulatory support. Cell sheet-based tissue engineering technologies therefore show an enormous promise as a novel approach in the field of myocardial tissue engineering.
Related JoVE Video
Creation of mouse embryonic stem cell-derived cardiac cell sheets.
Biomaterials
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Research on heart tissue engineering is an exciting and promising area. Although we previously developed bioengineered myocardium using cell sheet-based tissue engineering technologies, the issue of appropriate cell sources remained unresolved. In the present study, we created cell sheets of mouse embryonic stem (ES) cell-derived cardiomyocytes after expansion in three-dimensional stirred suspension cultures. Serial treatment of the suspension cultures with noggin and granulocyte colony-stimulating factor significantly increased the number of cardiomyocytes by more than fourfold compared with untreated cultures. After drug selection for ES cells expressing the neomycin-resistance gene under the control of the ?-myosin heavy chain promoter, almost all of the cells showed spontaneous beating and expressed several cardiac contractive proteins in a fine striated pattern. When ES-derived cardiomyocytes alone were seeded onto temperature-responsive culture dishes, cell sheets were not created, whereas cocultures with cardiac fibroblasts promoted cell sheet formation. The cardiomyocytes in the cell sheets beat spontaneously and synchronously, and expressed connexin 43 at the edge of adjacent cardiomyocytes. Furthermore, when the extracellular action potential was recorded, unidirectional action potential propagation was observed. The present findings suggest that stirred suspension cultures with appropriate growth factors are capable of producing cardiomyocytes effectively and easily, and that ES-derived cardiac cell sheets may be a promising tool for the development of bioengineered myocardium.
Related JoVE Video
Novel regenerative therapy using cell-sheet covered with omentum flap delivers a huge number of cells in a porcine myocardial infarction model.
J. Thorac. Cardiovasc. Surg.
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
A key challenge to applying cell transplantation to treat severely damaged myocardium is in delivering large numbers of cells with minimum cell loss. We developed a new implantation method using skeletal myoblast (SMB) sheets, wrapped with an omentum flap as a blood supply to deliver huge numbers of SMBs to the damaged heart. We examined whether this method could be used to deliver a large amount of cells to deteriorated porcine myocardium.
Related JoVE Video
"Deep-media culture condition" promoted lumen formation of endothelial cells within engineered three-dimensional tissues in vitro.
J Artif Organs
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a "deep-media culture conditions." Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.
Related JoVE Video
Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case.
Surg. Today
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by progressive heart failure, and is a leading cause of mortality and morbidity. Recently, cellular therapy for end-stage heart failure has been emerging. We herein report a 56-year-old male who received a transplant of autologous myoblast sheets manufactured in temperature-responsive culture dishes. His clinical condition improved markedly, leaving him without any arrhythmia and able to discontinue using a left ventricular assist system and avoid cardiac transplantation. These findings suggest that cellular therapy using myoblast sheets is a promising new strategy for treating patients with end-stage DCM. This method might be an effective alternative to heart transplantation in the near future.
Related JoVE Video
Impaired myocardium regeneration with skeletal cell sheets--a preclinical trial for tissue-engineered regeneration therapy.
Transplantation
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
We hypothesized that autologous skeletal cell (SC) sheets regenerate the infract myocardium in porcine heart as a preclinical trial.
Related JoVE Video
Three-dimensional cell-dense constructs containing endothelial cell-networks are an effective tool for in vivo and in vitro vascular biology research.
Microvasc. Res.
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
Angiogenesis is a complicated natural process, and understanding the mechanism by which it occurs is important for medical, pharmaceutical, and cell biological sciences. Many techniques for investigating angiogenesis have been reported. In this study, we introduced a novel application of a cell culture technique that can be used in in vitro and in vivo vascular biology research. Cultivated endothelial cells (ECs) were harvested from temperature responsive culture dishes by reducing the temperature, without the need for a proteinase treatment. For this technique, the direct contact of ECs with fibroblasts was important for the formation of a capillary-like network in vitro. Moreover, layered cell sheets containing EC-networks produced lumen and vascular structures in the three-dimensional constructs, as well as in the construct transplanted into a living body. Thus, our culture technique was able to create cell sheets and three-dimensional constructs containing EC-networks, because they preserved normal and intrinsic cell-cell direct contact and various cell adhesive factors. Moreover, the thickness of these three-dimensional (3-D) constructs could be controlled by the number of layered cell sheets. These observations indicated that our novel technology contributed to the progress of vascular biology and lead to a new tool that can be used in in vivo and in vitro vascular biology research.
Related JoVE Video
Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering.
Biomaterials
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Reconstructing a vascular network is a common task for three-dimensional (3-D) tissue engineering. Three-dimensional stratified tissues were created by stacking cell sheets, and the co-culture with endothelial cells (ECs) in the tissues was found to lead to in vitro pre-vascular network formation and promoted in vivo neovascularization after their transplantation. In this study, to clarify the effect of tissue fabrication process on a pre-vascular network formation, human origin ECs were introduced into the stratified tissue in several different ways, and the behavior of ECs in various positions of the 3-D tissue were compared each other. Human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts (NHDFs), and their mixture were harvested as an intact cell sheet from temperature-responsive culture dish at low-temperature (<20 degrees C). Single mono-culture EC sheet was stacked with two NHDF-sheets in different orders, and 3 co-cultured cell sheets were layered by a cell sheet collecting device. Morphological analyses revealed that pre-vascular networks composing of HUVECs were formed in all the triple layer constructs. Confocal microscope observation showed that the pre-vascular networks formed tube structures like a native microvasculature. These data indicate that the primary EC positioning in 3-D tissues may be critical for vascular formation.
Related JoVE Video
Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology.
Biomaterials
PUBLISHED: 10-16-2009
Show Abstract
Hide Abstract
To survive three-dimensional (3-D) cell-dense thick tissues after transplantation, the improvements of hypoxia, nutrient insufficiency, and accumulation of waste products are required. This study presents a strategy for the initiation of prevascular networks in a 3-D tissue construct by sandwiching endothelial cells between the cell sheets. For obtaining a stable stacked cell sheet construct, a sophisticated 3-D cell sheet manipulation system using temperature-responsive culture dishes and a cell sheet manipulator was developed. When sparsely cultured human umbilical vein endothelial cells (HUVECs) were sandwiched between two myoblast sheets, the inserted HUVECs sprouted and formed network structures in vitro. Additionally, when myoblast sheets and HUVECs were alternately sandwiched, endothelial cell connections through the layers and capillary-like structures were found in a five-layer construct. Moreover, the endothelial networks in the five-layer myoblast sheet construct were observed to connect to the host vessels after transplantation into the subcutaneous tissues of nude rats, resulted in a neovascularization that allow the graft to survive. These results indicated that the prevascularized myoblast sheet constructs could induce functional anastomosis. Consequently, our prevascularizing method using a cell sheet stacking manipulation technology provides a substantial advance for developing various types of three-dimensional tissues and contributes to regenerative medicine.
Related JoVE Video
Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue.
Curr. Pharm. Des.
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
Regenerative therapy has currently emerged as one of the most promising treatments for the patients suffering from severe heart failure. Several cell therapies by direct injection have been already clinically performed. However, significant cell loss due to physical strain, primary hypoxia or cell wash-out has become problematic. To overcome this obstacle, tissue engineered myocardial patch transplantation has been examined as the second generation cell therapy. Furthermore several research groups have challenged to engineer pulsatile myocardial tissues/organs using beating cardiomyocytes. Among several tissue engineering technologies, we have developed cell sheet-based tissue engineering, which utilize two-dimensional (2-D) cell sheets harvested from temperature-responsive culture surfaces and create three-dimensional (3-D) tissues by stacking cell sheets without generally utilized scaffolds. Several types of cell sheet-based patches have improved damaged heart function in rat, canine and pig models. Stacked cardiomyocyte sheets simultaneously beat in macroscopic view both in vitro and in vivo and revealed characteristic structures of native heart tissue. As a possible solution for scaling up, multi-step transplantation of triple-layer cell sheets was performed and finally, 10-time transplantations have realized about 1 mm-thick functional myocardial tissue. As further advanced therapy, functional myocardial tubes have been also engineered by wrapping cell sheets. Cell sheet-based tissue engineering should have enormous potential in myocardial tissue regenerative medicine and rescue many patients suffering severe heart failure.
Related JoVE Video
Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models.
Tissue Eng Part A
PUBLISHED: 07-02-2009
Show Abstract
Hide Abstract
For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.
Related JoVE Video
Clinical and angiographic characteristics of cavernous sinus dural arteriovenous fistulas manifesting as venous infarction and/or intracranial hemorrhage.
Neuroradiology
PUBLISHED: 07-01-2009
Show Abstract
Hide Abstract
Cavernous sinus (CS) dural arteriovenous fistulas (DAVFs) rarely cause venous infarction (VI) and/or intracranial hemorrhage (ICH) despite the presence of cortical venous drainage (CVD). The present study investigated the characteristics of CS DAVFs manifesting as VI/ICH.
Related JoVE Video
Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice.
J. Clin. Invest.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
Cardiac progenitor cells are a potential source of cell therapy for heart failure. Although recent studies have shown that transplantation of cardiac stem/progenitor cells improves function of infarcted hearts, the precise mechanisms of the improvement in function remain poorly understood. The present study demonstrates that transplantation of sheets of clonally expanded stem cell antigen 1-positive (Sca-1-positive) cells (CPCs) ameliorates cardiac dysfunction after myocardial infarction in mice. CPC efficiently differentiated into cardiomyocytes and secreted various cytokines, including soluble VCAM-1 (sVCAM-1). Secreted sVCAM-1 induced migration of endothelial cells and CPCs and prevented cardiomyocyte death from oxidative stress through activation of Akt, ERK, and p38 MAPK. Treatment with antibodies specific for very late antigen-4 (VLA-4), a receptor of sVCAM-1, abolished the effects of CPC-derived conditioned medium on cardiomyocytes and CPCs in vitro and inhibited angiogenesis, CPC migration, and survival in vivo, which led to attenuation of improved cardiac function following transplantation of CPC sheets. These results suggest that CPC transplantation improves cardiac function after myocardial infarction through cardiomyocyte differentiation and paracrine mechanisms mediated via the sVCAM-1/VLA-4 signaling pathway.
Related JoVE Video
Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method.
Biomaterials
PUBLISHED: 03-21-2009
Show Abstract
Hide Abstract
Embryonic stem cells (ESCs) are promising cell sources for cell-based therapy. It has been established that the formation of ESC aggregates promotes their differentiation into the derivatives of all three germ layers. ESC aggregates are generally prepared via the formation of suspended spherical aggregates called embryoid bodies (EBs). Because the differentiation efficiency depends on the size of EBs, it becomes one of the research topics how to prepare size-controlled EBs in a scalable manner for reproducible and high-throughput experiments. Here, we have developed a novel culture method that enables simple mass preparation of size-controlled ESC aggregates on a culture surface instead of floating EBs. We developed a maskless photolithography device that enabled rapid fabrication of micropatterned surfaces. Utilizing this device, we fabricated the culture substrates the surfaces of which comprised arrays of cell-adhesive circular micro-domains (100-400 microm in diameter) and the rest of non-cell-adhesive domains. We seeded mouse ESCs on this substrate and prepared size-controlled ESC aggregates on the micro-domains. We analyzed cardiac differentiation in the ESC aggregates and found that the optimal diameter of micro-domains was 200 microm. The present method is useful for the simple and reproducible mass preparation of ESC-derived differentiated cells and high-throughput assays.
Related JoVE Video
Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart.
J. Thorac. Cardiovasc. Surg.
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
The development of right ventricular dysfunction has become a common problem after surgical repair of complex congenital heart disease. A recent study reported that tissue-engineered skeletal myoblast sheet transplantation improves left ventricular function in patients with dilated and ischemic cardiomyopathy. Therefore myoblast sheet transplantation might also improve ventricular performance in a rat model of a pressure-overloaded right ventricle.
Related JoVE Video
Layered implantation of myoblast sheets attenuates adverse cardiac remodeling of the infarcted heart.
J. Thorac. Cardiovasc. Surg.
PUBLISHED: 01-07-2009
Show Abstract
Hide Abstract
We previously showed that autologous myoblast sheets constructed with tissue-engineering techniques improved the function of the impaired heart. In this study, we evaluated the effects of layered myoblast sheets to clarify whether increasing the number of sheets provides improvement of cardiac function.
Related JoVE Video
A molded hyaluronic acid gel as a micro-template for blood capillaries.
J Biomater Sci Polym Ed
Show Abstract
Hide Abstract
Fabrication of blood capillaries in tissue-engineered tissue is necessary for creating thick three-dimensional (3D) tissue with a high cellular density. For inducing blood capillaries in the tissue in vitro, a molded hyaluronic acid (HA) capillary-shaped gel was made as a template for blood capillaries by photolithography and power free pumping techniques. The fabricated HA capillary-shaped gel was sandwiched between two cell sheets consisting of neonatal normal human dermal fibroblasts (NHDFs), human umbilical vein endothelial cells (HUVECs), or co-cultured NHDFs and HUVECs, and eventually covered with the cells. Although a slight degradation of the HA gel was observed in the sandwiched tissue with HUVEC or NHDF cell sheets, significant degradation of the HA gel was observed in the sandwiched tissue with co-cultured cell sheets. Moreover, by continuing to culture the co-cultured tissue with HA gel, a tube formation was observed at the HA gel site. A sandwiched HA capillary-shaped gel with two cell sheets has a potential for creating blood capillaries in vitro and fabricating vascularized artificial organs.
Related JoVE Video
Myocardial layer-specific effect of myoblast cell-sheet implantation evaluated by tissue strain imaging.
Circ. J.
Show Abstract
Hide Abstract
The implantation of skeletal myoblast (SMB) cell-sheets over the damaged area of a myocardial infarction (MI) has been shown to improve global left ventricular (LV) function through a paracrine effect. However, the regeneration process has not been fully evaluated. We hypothesized that the use of tissue Doppler strain M-mode imaging to assess myocardial layer-specific strain might enable detailed visual evaluation of the regenerative ability of SMBs.
Related JoVE Video
Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system.
PLoS ONE
Show Abstract
Hide Abstract
Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1 × 10(8) cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5 × 10(8). Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue.
Related JoVE Video
Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats.
Stem Cells Transl Med
Show Abstract
Hide Abstract
Cell-based therapies are promising strategies for myocardial repair following myocardial infarction. Induced pluripotent stem (iPS) cells have the potential to generate many cardiomyocytes, and they hold significant promise for the application of regenerative medicine to heart failure. Here, we developed cardiac tissue sheets, termed bioengineered myocardium (BM), from mouse iPS cells and measured cardiac performance following BM implantation in a rat chronic myocardial infarction model. Immunostaining analyses revealed that the ?-actinin(+) cell population was isolated with more than 99% purity under specific culture conditions. To evaluate the contribution of BM to the improvements in cardiac performance, we induced myocardial infarction in 30 F344/NJcl-rnu/rnu rats by left anterior descending coronary ligation. The rats were randomly divided into two groups, 2 weeks after ligation: a BM implantation group (n = 15) and a sham group (n = 15). Echocardiography and catheter examination showed that the BM implantation significantly improved cardiac function and attenuated cardiac remodeling compared with the sham group. Histological analyses demonstrated that the implanted BM survived at the epicardial implantation site 4 weeks after implantation. The implanted BM survived and attenuated left ventricular remodeling in the rat chronic myocardial infarction model. Thus, BM derived from iPS cells might be a promising new treatment for heart failure.
Related JoVE Video
Concise review: cell therapy and tissue engineering for cardiovascular disease.
Stem Cells Transl Med
Show Abstract
Hide Abstract
Cardiovascular disease is a major cause of morbidity and mortality, especially in developed countries. Various therapies for cardiovascular disease are investigated actively and are performed clinically. Recently, cell-based regenerative medicine using several cell sources has appeared as an alternative therapy for curing cardiovascular diseases. Scaffold-based or cell sheet-based tissue engineering is focused as a new generational cell-based regenerative therapy, and the clinical trials have also been started. Cell-based regenerative therapies have an enormous potential for treating cardiovascular disease. This review summarizes the recent research of cell sources and cell-based-regenerative therapies for cardiovascular diseases.
Related JoVE Video
Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet.
Biomaterials
Show Abstract
Hide Abstract
Autologous transplantation of myoblast sheet has attracted attention as a new technique for curing myocardial infarction. Myoblast sheet has the ability to secret cytokines that improve heart function via the facilitation of angiogenesis on affected part. To mimic the in vivo angiogenesis in the myoblast sheet after transplantation, a five-layered cell sheet of human skeletal muscle myoblasts (HSMMs) was overlaid on human umbilical vein endothelial cells (HUVECs) which enables evaluation of dynamic HUVEC behavior. HUVECs existing initially at the bottom of the sheet changed to be a stretched shape and migrated upward compared with the surrounding HSMMs in the sheet. Prolonged incubation resulted in network formation of HUVECs in the middle of the sheet, although non-networked HUVECs continued to migrate to the top of the sheet, which meant the spatial habitation of HUVECs in the cell sheet. Image processing was performed to determine the variation in the extent of network formation at different HUVEC densities. It was found that the extent of formed network depended on the frequency of encounters among HUVECs in the middle of the sheet. The present system, which can evaluate network formation, is considered to be a promising in vitro angiogenesis model.
Related JoVE Video
Control of the formation of vascular networks in 3D tissue engineered constructs.
Biomaterials
Show Abstract
Hide Abstract
Construction of bio-mimetic well-organized three-dimensional (3D) tissue with various cells in vitro is one of the ultimate goals of tissue engineering. In particular, fabrication of vasculature in 3D tissue is one of the most important tasks in tissue engineering, because a vascular network is indispensable for almost every tissue in our body. Here, we sandwiched stripe patterned endothelial cells by randomly cultured fibroblast sheets to control the formation of vasculature in the tissue. The endothelial cells left the original pattern and formed a random network between the two sheets, but, where fibroblasts were focally oriented, some endothelial cells changed their orientation to the same direction as the surrounding fibroblasts. Based on this phenomenon, we sandwiched stripe-patterned endothelial cells between parallel-oriented fibroblast sheets to construct a continuous pre-vascular structure. In the tissue, endothelial cells maintained the shape of their original pattern. On the other hand, stripe-patterned endothelial cells that were vertically sandwiched between oriented fibroblast sheets diverged from the original pattern at right angles, so that they were aligned with the surrounding fibroblasts. These data indicates that, 3D design with consideration of cell-to-cell interaction is critical to fabricate a specific 3D tissue structure. The 3D-designed tissue will become a powerful tool for the study of pharmacology and biology, the substitution of animal models and the fabrication of vascularized tissue grafts.
Related JoVE Video
New isolation system for collecting living cells from tissue.
J. Biosci. Bioeng.
Show Abstract
Hide Abstract
A new semi-automatic living-cell isolation system was developed. The new system improves the quality of isolated cells, reduces cell isolation time, and isolates more cells with a higher cell viability compared to conventional manual methods. We successfully applied this system to isolate beating cardiomyocytes and fabricate electrical communicative cardiac tissue. In this study using the isolated cardiac cells we also fabricated a cardiac cell sheet that beat spontaneously and synchronously.
Related JoVE Video
Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model.
Circulation
Show Abstract
Hide Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However, several issues, especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPS cells, must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting large numbers of cells. We hypothesized that hiPS-CM-sheet transplantation would be feasible, safe, and therapeutically effective for the treatment of ischemic cardiomyopathy.
Related JoVE Video
Historical control data on prenatal developmental toxicity studies in rabbits.
Congenit Anom (Kyoto)
Show Abstract
Hide Abstract
Historical control data on rabbit prenatal developmental toxicity studies, performed between 1994-2010, were obtained from 20 laboratories, including 11 pharmaceutical and chemical companies and nine contract laboratories, in Japan. In this paper, data were incorporated from a laboratory if the information was based on 10 studies or more. Japanese White rabbits and New Zealand White rabbits were used for prenatal developmental toxicity studies. The data included maternal reproductive findings at terminal cesarean sections and fetal findings including spontaneous incidences of morphological alterations. No noticeable differences between strains or laboratories were observed in the maternal reproductive and fetal developmental data. The inter-laboratory variations in the incidences of fetal external, visceral, and skeletal alterations seem to be due to differences in the selection of observation parameters, observation criteria, and classification of the findings, and terminology of fetal alterations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.