JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
The mechanisms permitting nonpolymorphic CD1 molecules to present lipid antigens that differ considerably in polar head and aliphatic tails remain elusive. It is also unclear why hydrophobic motifs in the aliphatic tails of some antigens, which presumably embed inside CD1 pockets, contribute to determinants for T-cell recognition. The 1.9-Å crystal structure of an active complex of CD1b and a mycobacterial diacylsulfoglycolipid presented here provides some clues. Upon antigen binding, endogenous spacers of CD1b, which consist of a mixture of diradylglycerols, moved considerably within the lipid-binding groove. Spacer displacement was accompanied by F pocket closure and an extensive rearrangement of residues exposed to T-cell receptors. Such structural reorganization resulted in reduction of the A pocket capacity and led to incomplete embedding of the methyl-ramified portion of the phthioceranoyl chain of the antigen, explaining why such hydrophobic motifs are critical for T-cell receptor recognition. Mutagenesis experiments supported the functional importance of the observed structural alterations for T-cell stimulation. Overall, our data delineate a complex molecular mechanism combining spacer repositioning and ligand-induced conformational changes that, together with pocket intricacy, endows CD1b with the required molecular plasticity to present a broad range of structurally diverse antigens.
Related JoVE Video
Fatty acyl structures of mycobacterium tuberculosis sulfoglycolipid govern T cell response.
J. Immunol.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
CD1b-restricted T lymphocytes recognize a large diversity of mycobacterial lipids, which differ in their hydrophilic heads and the structure of their acyl appendages. Both moieties participate in the antigenicity of lipid Ags, but the structural constraints governing binding to CD1b and generation of antigenic CD1b:lipid Ag complexes are still poorly understood. Here, we investigated the structural requirements conferring antigenicity to Mycobacterium tuberculosis sulfoglycolipid Ags using a combination of CD1b:lipid binding and T cell activation assays with both living dendritic cells and plate-bound recombinant soluble CD1b. Comparison of the antigenicity of a panel of synthetic analogs, sharing the same trehalose-sulfate polar head, but differing in the structure of their acyl tails, shows that the number of C-methyl substituents on the fatty acid, the configuration of the chiral centers, and the respective localization of the two different acyl chains on the sugar moiety govern TCR recognition and T lymphocyte activation. These studies have major implications for the design of sulfoglycolipid analogs with potential use as tuberculosis subunit vaccines.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.