JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches.
Metabolites
PUBLISHED: 06-29-2014
Show Abstract
Hide Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Related JoVE Video
Mitochondrial remodeling in hepatic differentiation and dedifferentiation.
Int. J. Biochem. Cell Biol.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Mitochondrial biogenesis and metabolism have recently emerged as important actors of stemness and differentiation. On the one hand, the differentiation of stem cells is associated with an induction of mitochondrial biogenesis and a shift from glycolysis toward oxidative phosphorylations (OXPHOS). In addition, interfering with mitochondrial biogenesis or function impacts stem cell differentiation. On the other hand, some inverse changes in mitochondrial abundance and function are observed during the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Yet although great promises in cell therapy might generate better knowledge of the mechanisms regulating the stemness and differentiation of somatic stem cells (SSCs)-which are preferred over embryonic stem cells (ESCs) and iPSCs because of ethical and safety considerations-little interest was given to the study of their mitochondria. This study provides a detailed characterization of the mitochondrial biogenesis occurring during the hepatogenic differentiation of bone marrow-mesenchymal stem cells (BM-MSCs). During the hepatogenic differentiation of BM-MSCs, an increased abundance of mitochondrial DNA (mtDNA) is observed, as well as an increased expression of several mitochondrial proteins and biogenesis regulators, concomitant with increased OXPHOS activity, capacity, and efficiency. In addition, opposite changes in mitochondrial morphology and in the abundance of several OXPHOS subunits were found during the spontaneous dedifferentiation of primary hepatocytes. These data support reverse mitochondrial changes in a different context from genetically-engineered reprogramming. They argue in favor of a mitochondrial involvement in hepatic differentiation and dedifferentiation.
Related JoVE Video
Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types.
J. Cell. Physiol.
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Among the main causes of cancer cell resistance to chemotherapy are p53 mutation and hypoxic tumor microenvironment. However, the effect of hypoxia can be very different from one cell type to the other. We studied the effect of hypoxia on the etoposide-induced cell death in two cancer cell lines, HepG2 and A549 cells. Hypoxia decreased etoposide-induced apoptosis in HepG2 cells but not in A549 cells. Here, we evidenced two pathways, known to play important roles in cancer cell resistance, that are differently affected by hypoxia in these two cell types. First, in HepG2 cells, hypoxia decreased p53 protein level and activity by acting post-transcriptionally and independently of HIF-1. The results suggest an effect of hypoxia on p53 translation. On the other hand, in A549 cells, no effect of hypoxia was observed on p53 level. Secondly, hypoxia decreased DNA damage response in HepG2 cells while this was not the case in A549 cells. Indeed, a decrease in the phosphorylation level of CHK2 and H2AX with a decrease in ATM activity was observed. Importantly, these results evidenced that hypoxia can prevent cancer cell apoptosis by acting at different levels in the cell and that these effects are strongly cell-type dependent.
Related JoVE Video
Functional and morphological impact of ER stress on mitochondria.
J. Cell. Physiol.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimers disease will also be considered.
Related JoVE Video
PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are used to treat dyslipidemia and insulin resistance. In this study, we examined molecular mechanisms that explain differential effects of a PPAR? agonist (fenofibrate) and a PPAR? agonist (rosiglitazone) on macrophages during obesity-induced atherogenesis. Twelve-week-old mice with combined leptin and LDL-receptor deficiency (DKO) were treated with fenofibrate, rosiglitazone or placebo for 12 weeks. Only rosiglitazone improved adipocyte function, restored insulin sensitivity, and inhibited atherosclerosis by decreasing lipid-loaded macrophages. In addition, it increased interleukin-1 receptor-associated kinase-3 (Irak3) and decreased monocyte chemoattractant protein-1 (Mcp1) expressions, indicative of a switch from M1 to M2 macrophages. The differences between fenofibrate and rosiglitazone were independent of Ppar? expression. In bone marrow-derived macrophages (BMDM), we identified the rosiglitazone-associated increase in adiponectin as cause of the increase in Irak3. Interestingly, the deletion of Irak3 in BMDM (IRAK3(-/-) BMDM) resulted in activation of the canonical NF?B signaling pathway and increased Mcp1 protein secretion. Rosiglitazone could not decrease the elevated Mcp1 secretion in IRAK3(-/-) BMDM directly and fenofibrate even increased the secretion, possibly due to increased mitochondrial reactive oxygen species production. Furthermore, aortic extracts of high-fat insulin-resistant LDL-receptor deficient mice, with lower adiponectin and Irak3 and higher Mcp1, showed accelerated atherosclerosis. In aggregate, our results emphasize an interaction between PPAR agonist-mediated increase in adiponectin and macrophage-associated Irak3 in the protection against atherosclerosis by PPAR agonists.
Related JoVE Video
Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains.
Int. J. Biochem. Cell Biol.
PUBLISHED: 07-06-2011
Show Abstract
Hide Abstract
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.
Related JoVE Video
The peroxynitrite donor 3-morpholinosydnonimine activates Nrf2 and the UPR leading to a cytoprotective response in endothelial cells.
Cell. Signal.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Endothelial dysfunction is associated with the formation of peroxynitrite, described to be toxic. Recent data also suggests that peroxynitrite is able to activate the protective Nrf2 pathway and/or the unfolded protein response (UPR). The aim of our work was to study the response of human endothelial cells to 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, and to highlight the possible protective roles of Nrf2 or the UPR pathway in this response. Immortal and primary human umbilical vein endothelial cells were exposed to SIN-1. SIN-1 incubation led to Nrf2 activation and to the overexpression of Nrf2-regulated genes, heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1. We also demonstrated that this defensive response protected cells against cell death induced by serum starvation, by reducing apoptosis (monitored by caspase-3 activity and DNA fragmentation) and favoring autophagosome formation, as evidenced by LC3-II accumulation. Interestingly, we observed an activation of the UPR, with a rapid and significant overexpression of CHOP in serum starved cells stimulated with SIN-1. While siRNA mediated knockdown of CHOP had no effect on DNA fragmentation, the invalidation of Nrf2 or HO-1 by siRNA strongly increased DNA fragmentation, but also reinforced the SIN-1-induced LC3-II accumulation. This study shows that peroxynitrite, at least at sublethal concentrations and within a narrow concentration range, could exert protective effects on endothelial cells by modulating the balance between autophagy and apoptosis, through Nrf2-dependent pathways.
Related JoVE Video
MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets.
PLoS ONE
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated.
Related JoVE Video
Hypersensitivity of mtDNA-depleted cells to staurosporine-induced apoptosis: roles of Bcl-2 downregulation and cathepsin B.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 11-10-2010
Show Abstract
Hide Abstract
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ?(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ?(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.
Related JoVE Video
BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway.
Biochem. Pharmacol.
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
Tumor hypoxia is a common characteristic of most solid tumors and is correlated with poor prognosis for patients partly because hypoxia promotes resistance to cancer therapy. Hypoxia selects cancer cells that are resistant to apoptosis and allows the onset of mechanisms that promote cancer cells survival including autophagy. Previously, we showed that human hepatoma HepG2 cells were protected under hypoxia against the etoposide-induced apoptosis. In this study, respective putative contribution of autophagy and BNIP3 in the protection conferred by hypoxia against the etoposide-induced apoptosis was investigated. We report that autophagy is induced by etoposide, a process that is not affected by hypoxic conditions. Using Atg5 siRNA, we show that etoposide-induced autophagy promotes apoptotic cell death under normoxia but not under hypoxia. Then, we investigated whether the hypoxia-induced protein BNIP3 could explain the different effect of autophagy on cell death under hypoxia or normoxia. We show that the silencing of BNIP3 does not affect autophagy whatever the pO(2) but participates in the protective effect of hypoxia against etoposide-induced apoptosis. Together, these results suggest that autophagy might be involved in etoposide-induced cell death only under normoxia and that BNIP3 is a major effector of the protective mechanism conferred by hypoxia to protect cancer cells against etoposide-induced apoptotic cell death.
Related JoVE Video
Copper and myeloperoxidase-modified LDLs activate Nrf2 through different pathways of ROS production in macrophages.
Antioxid. Redox Signal.
PUBLISHED: 05-08-2010
Show Abstract
Hide Abstract
Low-density lipoprotein (LDL) oxidation is a key step in atherogenesis, promoting the formation of lipid-laden macrophages. Here, we compared the effects of copper-oxidized LDLs (OxLDLs) and of the more physiologically relevant myeloperoxidase-oxidized LDLs (MoxLDLs) in murine RAW264.7 macrophages and in human peripheral blood monocyte-derived macrophages. Both oxidized LDLs, contrary to native LDLs, induced foam cell formation and an intracellular accumulation of reactive oxygen species (ROS). This oxidative stress was responsible for the activation of the NF-E2-related factor 2 (Nrf2) transcription factor, and the subsequent Nrf2-dependent overexpression of the antioxidant genes, Gclm and HO-1, as evidenced by the invalidation of Nrf2 by RNAi. MoxLDLs always induced a stronger response than OxLDLs. These differences could be partly explained by specific ROS-producing mechanisms differing between OxLDLs and MoxLDLs. Whereas both types of oxidized LDLs caused ROS production partly by NADPH oxidase, only MoxLDLs-induced ROS production was dependent on cytosolic PLA2. This study highlights that OxLDLs and MoxLDLs induce an oxidative stress, through distinct ROS-producing mechanisms, which is responsible for the differential activation of the Nrf2 pathway. These data clearly suggest that results obtained until now with copper oxidized-LDLs should be carefully reevaluated, taking into consideration physiologically more relevant oxidized LDLs.
Related JoVE Video
Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations.
Am. J. Pathol.
PUBLISHED: 08-21-2009
Show Abstract
Hide Abstract
In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria.
Related JoVE Video
Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent.
J. Cell. Sci.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
Impairment of mitochondrial activity affects lipid-metabolizing tissues and mild mitochondrial uncoupling has been proposed as a possible strategy to fight obesity and associated diseases. In this report, we characterized the 3T3-L1-adipocyte ;de-differentiation induced by carbonyl cyanide (p-trifluoromethoxy)-phenylhydrazone (FCCP), a mitochondrial uncoupler. We found a decrease in triglyceride (TG) content in adipocytes incubated with this molecule. We next analyzed the expression of genes encoding adipogenic markers and effectors and compared the differentially expressed genes in adipocytes treated with FCCP or TNFalpha (a cytokine known to induce adipocyte de-differentiation). Furthermore, a significant decrease in the transcriptional activity of PPARgamma and C/EBPalpha transcription factors was found in adipocytes with impaired mitochondrial activity. However, although these modifications were also found in TNFalpha-treated adipocytes, rosiglitazone and 9-cis retinoic acid (PPARgamma and RXR ligands) were unable to prevent triglyceride loss in FCCP-treated cells. Metabolic assays also revealed that TG reduction could be mediated by a downregulation of lipid synthesis rather than an upregulation of fatty acid oxidation. Finally, lipolysis stimulated by the uncoupler also seems to contribute to the TG reduction, a process associated with perilipin A downregulation. These results highlight some new mechanisms that might potentially be involved in adipocyte de-differentiation initiated by a mitochondrial uncoupling.
Related JoVE Video
Up-regulation of cathepsin B expression and enhanced secretion in mitochondrial DNA-depleted osteosarcoma cells.
Biol. Cell
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
mtDNA (mitochondrial DNA) mutations that impair oxidative phosphorylation can contribute to carcinogenesis through the increased production of reactive oxygen species and through the release of proteins involved in cell motility and invasion. On the other hand, many human cancers are associated with both the up-regulation and the increased secretion of several proteases and heparanase. In the present study, we tried to determine whether the depletion in mtDNA could modulate the expression and/or the secretion of some lysosomal hydrolases in the 143B osteosarcoma cells, as these mtDNA-depleted cells are characterized by a higher degree of invasiveness than the parental cells.
Related JoVE Video
Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types.
PLoS ONE
Show Abstract
Hide Abstract
Hypoxia plays an important role in the resistance of tumour cells to chemotherapy. However, the exact mechanisms underlying this process are not well understood. Moreover, according to the cell lines, hypoxia differently influences cell death. The study of the effects of hypoxia on the apoptosis induced by 5 chemotherapeutic drugs in 7 cancer cell types showed that hypoxia generally inhibited the drug-induced apoptosis. In most cases, the effect of hypoxia was the same for all the drugs in one cell type. The expression profile of 93 genes involved in apoptosis as well as the protein level of BCL-2 family proteins were then investigated. In HepG2 cells that are strongly protected against cell death by hypoxia, hypoxia decreased the abundance of nearly all the pro-apoptotic BCL-2 family proteins while none of them are decreased in A549 cells that are not protected against cell death by hypoxia. In HepG2 cells, hypoxia decreased NOXA and BAD abundance and modified the electrophoretic mobility of BIM(EL). BIM and NOXA are important mediators of etoposide-induced cell death in HepG2 cells and the hypoxia-induced modification of these proteins abundance or post-translational modifications partly account for chemoresistance. Finally, the modulation of the abundance and/or of the post-translational modifications of most proteins of the BCL-2 family by hypoxia involves p53-dependent and -independent pathways and is cell type-dependent. A better understanding of these cell-to-cell variations is crucial in order to overcome hypoxia-induced resistance and to ameliorate cancer therapy.
Related JoVE Video
Lipids and lysosomes.
Curr. Drug Metab.
Show Abstract
Hide Abstract
Lysosomes are cytoplasmic organelles delimited by a single membrane and filled with a variety of hydrolytic enzymes active at acidic pH and collectively capable to degrade the vast majority of macromolecules entering lysosomes via endocytosis, phagocytosis or autophagy. In this review, we describe the lipid composition and the dynamic properties of lysosomal membrane, the main delivery pathways of lipids to lysosomes and their catabolism inside lysosomes. Then, we present the consequences of a lipid accumulation as seen in various lysosomal storage diseases on lysosomal functions. Finally, we discuss about the possible involvement of lysosomes in lipotoxicity.
Related JoVE Video
TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells.
BMC Cancer
Show Abstract
Hide Abstract
Hypoxia is a common characteristic of solid tumors associated with reduced response to radio- and chemotherapy, therefore increasing the probability of tumor recurrence. The aim of this study was to identify new mechanisms responsible for hypoxia-induced resistance in breast cancer cells.
Related JoVE Video
miR-212/132 expression and functions: within and beyond the neuronal compartment.
Nucleic Acids Res.
Show Abstract
Hide Abstract
During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimers disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a neurimmiR, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.
Related JoVE Video
Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: role for triglyceride content reduction.
Am. J. Physiol. Endocrinol. Metab.
Show Abstract
Hide Abstract
In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNF?, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by FCCP were investigated on the mitochondrial population of 3T3-L1 adipocytes by both quantitative and qualitative approaches. We found that mild mitochondrial uncoupling does not stimulate mitochondrial biogenesis in adipocytes but induces an adaptive cell response characterized by quantitative modifications of mitochondrial protein content. Superoxide anion radical level was increased in mitochondria of both TNF?- and FCCP-treated adipocytes, whereas mitochondrial DNA copy number was significantly higher only in TNF?-treated cells. Subproteomic analysis revealed that the abundance of pyruvate carboxylase was reduced significantly in mitochondria of TNF?- and FCCP-treated adipocytes. Functional study showed that overexpression of this major enzyme of lipid metabolism is able to prevent the triglyceride content reduction in adipocytes exposed to mitochondrial uncoupling or TNF?. These results suggest a new mechanism by which the effects of mitochondrial uncoupling might limit triglyceride accumulation in adipocytes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.