JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
LHON Gene Therapy Vector Prevents Visual Loss and Optic Neuropathy Induced by G11778A Mutant Mitochondrial DNA: Biodistribution and Toxicology Profile.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
Purpose: To demonstrate safety and efficacy of allotopic human ND4 for treatment of Leber's hereditary optic neuropathy (LHON) mouse model harboring G11778A mitochondrial mutation. Methods: We induced LHON in mice by intravitreal injection of mutant (G11778A) human ND4 DNA responsible for most cases of LHON that was directed to mitochondria using an AAV2 vector to which we appended a mitochondrial targeting sequence to the VP2 capsid. We then attempted rescue of visual loss using our test article (ScAAV2-P1ND4v2) containing a synthetic nuclear encoded G11778G ND4 gene that was allotopically expressed. Control mice were either un-injected or received AAV2-GFP or AAV2-mCherry. We performed RT-PCR and confocal microscopy at 2 weeks post injection. Pattern electroretinograms (PERGs), SD-OCT, histology and TEM were performed. For toxicology and biodistribution studies the test article was administered intravitreally to rats and rhesus macaques at different doses. Results: Mutant and wild-type ND4 were efficiently expressed in the mitochondria of retinal ganglion cells. Visual function assessed by PERGs and retinal structure by SD-OCT showed a significant rescue by the test article. Histology and ultrastructural analysis confirmed loss of RGCs and demise of axons was prevented by ScAAV2-P1ND4v2. Rat and nonhuman primate biodistribution studies showed vector spread outside the injected eye into spleen and lymph nodes was minimal. Histopathology of tissues and organs including the eyes was comparable to uninfected and saline injected eyes. Conclusions: Allotopically expressed wild-type ND4 prevents the phenotype induced by G11778A mitochondrial DNA with a toxicology profile acceptable for testing in a phase I clinical trial.
Related JoVE Video
Cigarette smoke-induced iBALT mediates macrophage activation in a B cell-dependent manner in COPD.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD.
Related JoVE Video
Establishing intensivist-driven ultrasound at the PICU bedside--it's about time*.
Pediatr Crit Care Med
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
To discuss pediatric intensivist-driven ultrasound and the exigent need for research and practice definitions pertaining to its implementation within pediatric critical care, specifically addressing issues in ultrasound-guided vascular access and intensivist-driven echocardiography.
Related JoVE Video
Early postresuscitation hypotension is associated with increased mortality following pediatric cardiac arrest.
Crit. Care Med.
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
To describe the association of systolic hypotension during the first 6 hours after successful resuscitation from pediatric cardiopulmonary arrest with in-hospital mortality.
Related JoVE Video
Reprogramming Adipose Tissue-Derived Mesenchymal Stem Cells into Pluripotent Stem Cells by a Mutant Adeno-Associated Viral Vector.
Hum Gene Ther Methods
PUBLISHED: 12-28-2013
Show Abstract
Hide Abstract
Abstract Induced pluripotent stem (iPS) cells have great potential for personalized regenerative medicine. Although several different methods for generating iPS cells have been reported, improvement of safety and efficiency is imperative. In this study, we tested the feasibility of using a triple tyrosine mutant AAV2 (Y444+500+730F) vector, designated AAV2.3m, to generate iPS cells. We developed a polycistronic rAAV2.3m vector expressing three reprogramming factors, Klf4, Oct4, and Sox2, and then used this vector to infect mouse adipose-derived mesenchymal stem cells (AT-MSCs) to induce the generation of iPS cells. We demonstrated that (1) the triple tyrosine mutant AAV2 vector is able to reprogram mouse adult adipose tissue-derived stem cells into the pluripotent state. Those rAAV2.3m-derived iPS (rAAV2.3m-iPS) cells express endogenous pluripotency-associated genes including Oct4, Sox2, and SSEA-1, and form teratomas containing multiple tissues in vivo; (2) c-myc, an oncogene, is dispensable in rAAV2.3m-mediated cellular reprogramming; and (3) transgene expression is undetectable after reprogramming, whereas vector DNA is detectable, indicating that transgenes are silenced. These results indicated the rAAV vector may have some advantages in generating iPS cells.
Related JoVE Video
Preclinical toxicology and biodistribution studies of recombinant adeno-associated virus 1 human acid ?-glucosidase.
Hum Gene Ther Clin Dev
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
A biodistribution and toxicology study was performed to test the acute toxicities of intradiaphragmatic injection of a recombinant adeno-associated virus (rAAV) 2/1-human acid alpha-Glucosidase (hGAA) driven by a cytomegalovirus (CMV) promoter (rAAV1-CMV-hGAA) in New Zealand white rabbits and in the rodent Pompe disease model by injecting at the right quadriceps. Studies performed using fluoroscopy and AAV2-GFP demonstrated spread upon intradiaphragmatic injection, and the ability of AAV to infect and express acid ?-glucosidase (GAA) throughout the diaphragm. For the preclinical study, 10 rabbits (5 male, 5 female) were divided into two groups, vehicle control (Lactated Ringers) and test article (1.5×10(12) vector genomes [vg] rAAV1-CMV-hGAA), and euthanized on day 21. After direct visualization, the left hemidiaphragm was injected at three locations. There was up to a 2,500-fold increase in circulating anti-AAV1 antibodies directed to the vector capsids. In addition, up to an 18-fold increase in antibodies against the GAA protein was generated. Injection sites maintained up to 1.0×10(5) vg/?g genomic DNA (gDNA), while uninjected sites had up to 1.0×10(4) vg/?g gDNA. Vector DNA was present in blood at 24 hr postinjection at up to 1.0×10(6) vg/?g gDNA, followed by a decrease to 1.0×10(3) vg/?g gDNA at euthanization on day 21. Nominal amounts of vector DNA were present in peripheral organs, including the brain, spinal cord, gonads, and skeletal muscle. Upon histopathological examination, fibroplasias of the serosal surface were noted at diaphragm injections sites of both groups. In addition, an increase in mononuclear cell infiltration in the diaphragm and esophagus in vector-dosed animals was found. Elevated creatine phosphokinase levels, an indicator of muscle repair, was observed in all animals postprocedure but persisted in vector-injected rabbits until euthanization. A follow-up study suggested that this was directed against the human transgene expression in a foreign species. Overall, this study demonstrates diffusion of vector throughout the diaphragm after localized injections.
Related JoVE Video
BAFF and associated TNF superfamily members in renal transplantation: an end to BLySful ignorance.
Transplantation
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
: The emergence of B-cell-activating factor and its related family members as critical mediators for B-cell development and survival has led to the development of a number of new agents aimed at controlling complicated chronic pathologies with an underlying humoral component. Currently being trialed in autoimmunity, these agents also hold much promise for preventing the insidious humoral responses that are increasingly associated with early failure of kidney transplants. This review discusses some of the pertinent aspects of B-cell-activating factor biology and considers how recent advances in our understanding of this signaling axis could be exploited to improve clinical outcomes in renal transplantation.
Related JoVE Video
Copresentation of intact and processed MHC alloantigen by recipient dendritic cells enables delivery of linked help to alloreactive CD8 T cells by indirect-pathway CD4 T cells.
J. Immunol.
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
In transplantation, direct-pathway CD8 T cells that recognize alloantigen on donor cells require CD4 help for activation and cytolytic function. The ability of indirect-pathway CD4 T cells to provide this help remains unexplained, because a fundamental requirement for epitope linkage is seemingly broken. The simultaneous presentation, by host dendritic cells (DCs), of both intact MHC class I alloantigen and processed alloantigen would deliver linked help, but has not been demonstrated definitively. In this study, we report that following in vitro coculture with BALB/c DCs, small numbers (~1.5%) of C57BL/6 (B6) DCs presented acquired H-2(d) alloantigen both as processed allopeptide and as unprocessed Ag. This represented class I alloantigen provides a conformational epitope for direct-pathway allorecognition, because B6 DCs isolated from cocultures and transferred to naive B6 mice provoked cytotoxic CD8 T cell alloimmunity. Crucially, this response was dependent upon simultaneous presentation of class II-restricted allopeptide, because despite acquiring similar amounts of H-2(d) alloantigen upon coculture, MHC class II-deficient B6 DCs failed to elicit cytotoxic alloimmunity. The relevance of this pathway to solid-organ transplantation was then confirmed by the demonstration that CD8 T cell cytotoxicity was provoked in secondary recipients by transfer of DCs purified from wild-type, but not from MHC class II-deficient, C57BL/6 recipients of BALB/c heart transplants. These experiments demonstrate that representation of conformationally intact MHC alloantigen by recipient APC can induce cytotoxic alloimmunity, but simultaneous copresentation of processed allopeptide is essential, presumably because this facilitates linked recognition by indirect-pathway CD4 Th cells.
Related JoVE Video
Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes.
Hum. Gene Ther.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Pompe disease is an inherited neuromuscular disease caused by deficiency of lysosomal acid alpha-glucosidase (GAA) leading to glycogen accumulation in muscle and motoneurons. Cardiopulmonary failure in infancy leads to early mortality, and GAA enzyme replacement therapy (ERT) results in improved survival, reduction of cardiac hypertrophy, and developmental gains. However, many children have progressive ventilatory insufficiency and need additional support. Preclinical work shows that gene transfer restores phrenic neural activity and corrects ventilatory deficits. Here we present 180-day safety and ventilatory outcomes for five ventilator-dependent children in a phase I/II clinical trial of AAV-mediated GAA gene therapy (rAAV1-hGAA) following intradiaphragmatic delivery. We assessed whether rAAV1-hGAA results in acceptable safety outcomes and detectable functional changes, using general safety measures, immunological studies, and pulmonary functional testing. All subjects required chronic, full-time mechanical ventilation because of respiratory failure that was unresponsive to both ERT and preoperative muscle-conditioning exercises. After receiving a dose of either 1×10(12) vg (n=3) or 5×10(12) vg (n=2) of rAAV1-hGAA, the subjects unassisted tidal volume was significantly larger (median [interquartile range] 28.8% increase [15.2-35.2], p<0.05). Further, most patients tolerated appreciably longer periods of unassisted breathing (425% increase [103-851], p=0.08). Gene transfer did not improve maximal inspiratory pressure. Expected levels of circulating antibodies and no T-cell-mediated immune responses to the vector (capsids) were observed. One subject demonstrated a slight increase in anti-GAA antibody that was not considered clinically significant. These results indicate that rAAV1-hGAA was safe and may lead to modest improvements in volitional ventilatory performance measures. Evaluation of the next five patients will determine whether earlier intervention can further enhance the functional benefit.
Related JoVE Video
Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa.
Hum Gene Ther Clin Dev
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
Abstract Proof of concept for MERTK gene replacement therapy has been demonstrated using different viral vectors in the Royal College of Surgeon (RCS) rat, a well characterized model of recessive retinitis pigmentosa that contains a mutation in the Mertk gene. MERTK plays a key role in renewal of photoreceptor outer segments (OS) by phagocytosis of shed OS tips. Mutations in MERTK cause impaired phagocytic activity and accumulation of OS debris in the interphotoreceptor space that ultimately leads to photoreceptor cell death. In the present study, we conducted a series of preclinical potency and GLP-compliant safety evaluations of an adeno-associated virus type 2 (AAV2) vector expressing human MERTK cDNA driven by the retinal pigment epithelium-specific, VMD2 promoter. We demonstrate the potency of the vector in RCS rats by improved electroretinogram (ERG) responses in treated eyes compared with contralateral untreated controls. Toxicology and biodistribution studies were performed in Sprague-Dawley (SD) rats injected with two different doses of AAV vectors and buffer control. Delivery of vector in SD rats did not result in a change in ERG amplitudes of rod and cone responses relative to balanced salt solution control-injected eyes, indicating that administration of AAV vector did not adversely affect normal retinal function. In vivo fundoscopic analysis and postmortem retinal morphology of the vector-injected eyes were normal compared with controls. Evaluation of blood smears showed the lack of transformed cells in the treated eyes. All injected eyes and day 1 blood samples were positive for vector genomes, and all peripheral tissues were negative. Our results demonstrate the potency and safety of the AAV2-VMD2-hMERTK vector in animal models tested. A GMP vector has been manufactured and is presently in clinical trial.
Related JoVE Video
Regression of schwannomas induced by adeno-associated virus-mediated delivery of caspase-1.
Hum. Gene Ther.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene therapy for schwannomas, using a model in which immortalized human NF2 schwannoma cells expressing a fluorescent protein and luciferase are implanted in the sciatic nerve of nude mice. Direct injection of an adeno-associated virus (AAV) serotype 1 vector encoding caspase-1 (ICE) under the Schwann-cell specific promoter, P0, leads to regression of these tumors with essentially no vector-mediated neuropathology, and no changes in sensory or motor function. In a related NF2 xenograft model designed to cause measurable pain behavior, the same gene therapy leads to tumor regression and concordant resolution of tumor-associated pain. This AAV1-P0-ICE vector holds promise for clinical treatment of schwannomas by direct intratumoral injection to achieve reduction in tumor size and normalization of neuronal function.
Related JoVE Video
Identification of adeno-associated viral vectors suitable for intestinal gene delivery and modulation of experimental colitis.
Am. J. Physiol. Gastrointest. Liver Physiol.
PUBLISHED: 11-23-2011
Show Abstract
Hide Abstract
Effective gene transfer with sustained gene expression is an important adjunct to the study of intestinal inflammation and future therapy in inflammatory bowel disease. Recombinant adeno-associated virus (AAV) vectors are ideal for gene transfer and long-term transgene expression. The purpose of our study was to identify optimal AAV pseudotypes for transduction of the epithelium in the small intestine and colon, which could be used for studies in experimental colitis. The tropism and transduction efficiencies of AAV pseudotypes 1-10 were examined in murine small intestine and colon 8 wk after administration by real-time PCR and immunohistochemistry. The clinical and histopathological effects of IL-10-mediated intestinal transduction delivered by AAVrh10 were examined in the murine IL-10?/? enterocolitis model. Serum IL-10 levels and IL-10 expression were followed by ELISA and real-time PCR, respectively. AAV pseudotypes 4, 7, 8, 9, and 10 demonstrated optimal intestinal transduction. Transgene expression was sustained 8 wk after administration and was frequently observed in enteroendocrine cells. Long-term IL-10 gene expression and serum IL-10 levels were observed following AAV transduction in an IL-10-/- model of enterocolitis. Animals treated with AAVrh10-IL-10 had lower disease activity index scores, higher colon weight-to-length ratios, and lower microscopic inflammation scores. This study identifies novel AAV pseudotypes with small intestine and colon tropism and sustained transgene expression capable of modulating mucosal inflammation in a murine model of enterocolitis.
Related JoVE Video
Preclinical study design for rAAV.
Methods Mol. Biol.
PUBLISHED: 10-29-2011
Show Abstract
Hide Abstract
The process of moving a novel drug such as an adeno-associated viral vector from the bench top to bedside is an arduous process requiring coordination and skill from multiple laboratories and regulatory agencies. Proceeding to a phase I safety trial in humans after most of the proof-of-concept data have been acquired may take several years. During this time, agencies including the FDA, NIH Office of Biotechnology Activities (OBA), and Recombinant DNA Advisory Committee (RAC) along with the investigators team will develop a series of preclinical toxicology and biodistribution studies in order to develop a safety profile for the intended novel drug. In this chapter, key features of the pharm-tox study design and conduct will be discussed. Highlighted features include choosing a sufficient animal number and species to use in testing, dose determination, typical toxicological assays performed, the use of Standard Operating Procedures in respect to good laboratory practices compliancy, and role of the Quality Assurance Unit.
Related JoVE Video
Blocking lymphotoxin signaling abrogates the development of ectopic lymphoid tissue within cardiac allografts and inhibits effector antibody responses.
FASEB J.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Tertiary lymphoid organs (TLOs) may develop within allografts, but their contribution to graft rejection remains unclear. Here, we study a mouse model of autoantibody-mediated cardiac allograft vasculopathy to clarify the alloimmune responses mediated by intragraft TLOs and whether blocking lymphotoxin-?-receptor (LT?R) signaling, a pathway essential for lymphoid organogenesis, abrogates TLO development. TLOs (defined as discrete lymphoid aggregates associated with high endothelial venules) were detectable in 9 of 13 heart allografts studied and were predominantly B cell in composition, harboring germinal-center activity. These are most likely manifestations of the humoral autoimmunity triggered in this model after transplantation; TLOs did not develop if autoantibody production was prevented. Treatment with inhibitory LT?R-Ig fusion protein virtually abolished allograft TLO formation (mean TLOs/heart: 0.2 vs. 2.2 in control recipients; P=0.02), with marked attenuation of the autoantibody response. Recipients primed for autoantibody before transplantation rejected grafts rapidly, but this accelerated rejection was prevented by postoperative administration of LT?R-Ig (median survival time: 18 vs. >50 d, respectively, P=0.003). Our results provide the first demonstration that TLOs develop within chronically rejecting heart allografts, are predominantly B cell in origin, and can be targeted pharmacologically to inhibit effector humoral responses.
Related JoVE Video
Pompe disease gene therapy.
Hum. Mol. Genet.
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation. A wide spectrum of disease exists from hypotonia and severe cardiac hypertrophy in the first few months of life due to severe mutations to a milder form with the onset of symptoms in adulthood. In either condition, the involvement of several systems leads to progressive weakness and disability. In early-onset severe cases, the natural history is characteristically cardiorespiratory failure and death in the first year of life. Since the advent of enzyme replacement therapy (ERT), the clinical outcomes have improved. However, it has become apparent that a new natural history is being defined in which some patients have substantial improvement following ERT, while others develop chronic disability reminiscent of the late-onset disease. In order to improve on the current clinical outcomes in Pompe patients with diminished clinical response to ERT, we sought to address the cause and potential for the treatment of disease manifestations which are not amenable to ERT. In this review, we will focus on the preclinical studies that are relevant to the development of a gene therapy strategy for Pompe disease, and have led to the first clinical trial of recombinant adeno-associated virus-mediated gene-based therapy for Pompe disease. We will cover the preliminary laboratory studies and rationale for a clinical trial, which is based on the treatment of the high rate of respiratory failure in the early-onset patients receiving ERT.
Related JoVE Video
Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.
Hum. Gene Ther.
PUBLISHED: 03-13-2011
Show Abstract
Hide Abstract
Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Ig?-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010 ). Currently, rAAV vectors are being utilized in phase I/II clinical trials for cystic fibrosis, ?-1 antitrypsin deficiency, Canavans disease, Parkinsons disease, hemophilia, limb-girdle muscular dystrophy, arthritis, Battens disease, and Lebers congenital amaurosis (Flotte et al., 1996 , 2004 ; Kay et al., 2000 ; Aitken et al., 2001 ; Wagner et al., 2002 ; Manno et al., 2003 ; Snyder and Francis, 2005 ; Maguire et al., 2008 ; Cideciyan et al., 2009 ). In this study, we present preclinical data to support the viability of an rAAV-based gene transfer strategy for cure of ADA-SCID. We report efficient transduction of a variety of postmitotic target tissues in vivo, subsequent human ADA (hADA) expression, and enhanced hADA secretion in tissues and blood, with increasing peripheral lymphocyte populations over time.
Related JoVE Video
Glycogen storage disease type Ia in canines: a model for human metabolic and genetic liver disease.
J. Biomed. Biotechnol.
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-?. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including "lactic acidosis", larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.
Related JoVE Video
Long-term preservation of cone photoreceptors and restoration of cone function by gene therapy in the guanylate cyclase-1 knockout (GC1KO) mouse.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
The authors previously showed that subretinal delivery of AAV5 vectors containing murine guanylate cyclase-1 (GC1) cDNA driven by either photoreceptor-specific (hGRK1) or ubiquitous (smCBA) promoters was capable of restoring cone-mediated function and visual behavior and preserving cone photoreceptors in the GC1 knockout (GC1KO) mouse for 3 months. Here, the authors compared therapy conferred by the aforementioned vectors to that achieved with the highly efficient capsid tyrosine mutant AAV8(Y733F) and asked whether long-term therapy is achievable in this model.
Related JoVE Video
Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D.
Ann. Neurol.
PUBLISHED: 10-30-2010
Show Abstract
Hide Abstract
The aim of this study was to attain long-lasting alpha-sarcoglycan gene expression in limb-girdle muscular dystrophy, type 2D (LGMD2D) subjects mediated by adeno-associated virus (AAV) gene transfer under control of a muscle specific promoter (tMCK).
Related JoVE Video
Characterization of a recombinant adeno-associated virus type 2 Reference Standard Material.
Hum. Gene Ther.
PUBLISHED: 09-16-2010
Show Abstract
Hide Abstract
A recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide. Using statistical transformation and modeling of the raw data, mean titers and confidence intervals were determined for capsid particles ({X}, 9.18?x?10¹¹ particles/ml; 95% confidence interval [CI], 7.89?x?10¹¹ to 1.05?x?10¹² particles/ml), vector genomes ({X}, 3.28?x?10¹? vector genomes/ml; 95% CI, 2.70?x?10¹? to 4.75?x?10¹? vector genomes/ml), transducing units ({X}, 5.09?x?10? transducing units/ml; 95% CI, 2.00?x?10? to 9.60?x?10? transducing units/ml), and infectious units ({X}, 4.37?x?10? TCID?? IU/ml; 95% CI, 2.06?x?10? to 9.26?x?10? TCID?? IU/ml). Further analysis confirmed the identity of the reference material as AAV2 and the purity relative to nonvector proteins as greater than 94%. One obvious trend in the quantitative data was the degree of variation between institutions for each assay despite the relatively tight correlation of assay results within an institution. This relatively poor degree of interlaboratory precision and accuracy was apparent even though attempts were made to standardize the assays by providing detailed protocols and common reagents. This is the first time that such variation between laboratories has been thoroughly documented and the findings emphasize the need in the field for universal reference standards. The rAAV2 RSM has been deposited with the American Type Culture Collection and is available to the scientific community to calibrate laboratory-specific internal titer standards. Anticipated uses of the rAAV2 RSM are discussed.
Related JoVE Video
Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia.
Hum. Gene Ther.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-alpha. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver.
Related JoVE Video
Gel-mediated delivery of AAV1 vectors corrects ventilatory function in Pompe mice with established disease.
Mol. Ther.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
Pompe disease is a muscular dystrophy that results in respiratory insufficiency. We characterized the outcomes of targeted delivery of recombinant adeno-associated virus serotype 1 (rAAV2/1) vector to diaphragms of Pompe mice with varying stages of disease progression. We observed significant improvement in diaphragm contractile strength in mice treated at 3 months of age that is sustained at least for 1 year and enhanced contractile strength in mice treated at 9 and 21 months of age, measured 3 months post-treatment. Ventilatory parameters including tidal volume/inspiratory time ratio, minute ventilation/expired CO2 ratio, and peak inspiratory airflow were significantly improved in mice treated at 3 months and tested at 6 months. Despite early improvement, mice treated at 3 months and tested at 1 year had diminished normoxic ventilation, potentially due to attenuation of correction over time or progressive degeneration of nontargeted accessory tissues. However, for all rAAV2/1-treated mice (treated at 3, 9, and 21 months, assayed 3 months later; treated at 3 months, assayed at 1 year), minute ventilation and peak inspiratory flows were significantly improved during respiratory challenge. These results demonstrate that gel-mediated delivery of rAAV2/1 vectors can significantly augment ventilatory function at initial and late phases of disease in a model of muscular dystrophy.
Related JoVE Video
Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins.
Ann. Neurol.
PUBLISHED: 10-03-2009
Show Abstract
Hide Abstract
alpha-Sarcoglycan deficiency results in a severe form of muscular dystrophy (limb-girdle muscular dystrophy type 2D [LGMD2D]) without treatment. Gene replacement represents a strategy for correcting the underlying defect. Questions related to this approach were addressed in this clinical trial, particularly the need for immunotherapy and persistence of gene expression.
Related JoVE Video
Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
Alpha-1 antitrypsin (AAT) deficiency is well-suited as a target for human gene transfer. We performed a phase 1, open-label, dose-escalation clinical trial of a recombinant adeno-associated virus (rAAV) vector expressing normal (M) AAT packaged into serotype 1 AAV capsids delivered by i.m. injection. Nine AAT-deficient subjects were enrolled sequentially in cohorts of 3 each at doses of 6.9 x 10(12), 2.2 x 10(13), and 6.0 x 10(13) vector genome particles per patient. Four subjects receiving AAT protein augmentation discontinued therapy 28 or 56 days before vector administration. Vector administration was well tolerated, with only mild local reactions and 1 unrelated serious adverse event (bacterial epididymitis). There were no changes in hematology or clinical chemistry parameters. M-specific AAT was expressed above background in all subjects in cohorts 2 and 3 and was sustained at levels 0.1% of normal for at least 1 year in the highest dosage level cohort, despite development of neutralizing antibody and IFN-gamma enzyme-linked immunospot responses to AAV1 capsid at day 14 in all subjects. These findings suggest that immune responses to AAV capsid that develop after i.m. injection of a serotype 1 rAAV vector expressing AAT do not completely eliminate transduced cells in this context.
Related JoVE Video
Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year.
Hum. Gene Ther.
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
Human gene therapy with rAAV2-vector was performed for the RPE65 form of childhood blindness called Leber congenital amaurosis. In three contemporaneous studies by independent groups, the procedure was deemed safe and there was evidence of visual gain in the short term. At 12 months after treatment, our young adult subjects remained healthy and without vector-related serious adverse events. Results of immunological assays to identify reaction to AAV serotype 2 capsid were unchanged from baseline measurements. Results of clinical eye examinations of study and control eyes, including visual acuities and central retinal structure by in vivo microscopy, were not different from those at the 3-month time point. The remarkable improvements in visual sensitivity we reported by 3 months were unchanged at 12 months. The retinal extent and magnitude of rod and cone components of the visual sensitivity between 3 and 12 months were also the same. The safety and efficacy of human retinal gene transfer with rAAV2-RPE65 vector extends to at least 1 year posttreatment.
Related JoVE Video
Donor CD4 T cells contribute to cardiac allograft vasculopathy by providing help for autoantibody production.
Circ Heart Fail
PUBLISHED: 05-13-2009
Show Abstract
Hide Abstract
The development of autoantibody after heart transplantation is increasingly associated with poor graft outcome, but what triggers its development and whether it has a direct causative role in graft rejection is not clear. Here, we study the development of antinuclear autoantibody in an established mouse model of heart allograft vasculopathy.
Related JoVE Video
Unlinked memory helper responses promote long-lasting humoral alloimmunity.
J. Immunol.
Show Abstract
Hide Abstract
Essential help for long-lived alloantibody responses is theoretically provided only by CD4 T cells that recognize target alloantigen, processed and presented by the allospecific B cell. We demonstrate that in an alloresponse to multiple MHC disparities, cognate help for class-switched alloantibody may also be provided by CD4 T cells specific for a second "helper" alloantigen. This response was much shorter-lived than when help was provided conventionally, by Th cell recognition of target alloantigen. Nevertheless, long-lasting humoral alloimmunity developed when T cell memory against the helper alloantigen was first generated. Costimulatory blockade abrogated alloantibody produced through naive Th cell recognition of target alloantigen but, crucially, blockade was ineffective when help was provided by memory responses to the accessory helper alloantigen. These results suggest that memory Th cell responses against previously encountered graft alloantigen may be the dominant mechanism for providing help to generate new specificities of alloantibody in transplant patients receiving immunosuppression.
Related JoVE Video
Regulation of allograft survival by inhibitory Fc?RIIb signaling.
J. Immunol.
Show Abstract
Hide Abstract
Fc? receptors (Fc?R) provide important immunoregulation. Targeting inhibitory Fc?RIIb may therefore prolong allograft survival, but its role in transplantation has not been addressed. Fc?RIIb signaling was examined in murine models of acute or chronic cardiac allograft rejection by transplanting recipients that either lacked Fc?RIIb expression (Fc?RIIb(-/-)) or overexpressed Fc?RIIb on B cells (B cell transgenic [BTG]). Acute heart allograft rejection occurred at the same tempo in Fc?RIIb(-/-) C57BL/6 (B6) recipients as wild type recipients, with similar IgG alloantibody responses. In contrast, chronic rejection of MHC class II-mismatched bm12 cardiac allografts was accelerated in Fc?RIIb(-/-) mice, with development of more severe transplant arteriopathy and markedly augmented effector autoantibody production. Autoantibody production was inhibited and rejection was delayed in BTG recipients. Similarly, whereas MHC class I-mismatched B6.K(d) hearts survived indefinitely and remained disease free in B6 mice, much stronger alloantibody responses and progressive graft arteriopathy developed in Fc?RIIb(-/-) recipients. Notably, Fc?RIIb-mediated inhibition of B6.K(d) heart graft rejection was abrogated by increasing T cell help through transfer of additional H2.K(d)-specific CD4 T cells. Thus, inhibitory Fc?RIIb signaling regulates chronic but not acute rejection, most likely because the supra-optimal helper CD4 T cell response in acute rejection overcomes Fc?RIIb-mediated inhibition of the effector B cell population. Immunomodulation of Fc?RIIb in clinical transplantation may hold potential for inhibiting progression of transplant arteriopathy and prolonging transplant survival.
Related JoVE Video
The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina.
Hum. Gene Ther.
Show Abstract
Hide Abstract
Adeno-associated virus (AAV) has proven an effective gene delivery vehicle for the treatment of retinal disease. Ongoing clinical trials using a serotype 2 AAV vector to express RPE65 in the retinal pigment epithelium have proven safe and effective. While many proof-of-concept studies in animal models of retinal disease have suggested that gene transfer to the neural retina will also be effective, a photoreceptor-targeting AAV vector has yet to be used in the clinic, principally because a vector that efficiently but exclusively targets all primate photoreceptors has yet to be demonstrated. Here, we evaluate a serotype 5 AAV vector containing the human rhodopsin kinase (hGRK1) promoter for its ability to target transgene expression to rod and cone photoreceptors when delivered subretinally in a nonhuman primate (NHP). In vivo fluorescent fundus imaging confirmed that AAV5-hGRK1-mediated green fluorescent protein (GFP) expression was restricted to the injection blebs of treated eyes. Optical coherence tomography (OCT) revealed a lack of gross pathology after injection. Neutralizing antibodies against AAV5 were undetectable in post-injection serum samples from subjects receiving uncomplicated subretinal injections (i.e., no hemorrhage). Immunohistochemistry of retinal sections confirmed hGRK1 was active in, and specific for, both rods and cones of NHP retina. Biodistribution studies revealed minimal spread of vector genomes to peripheral tissues. These results suggest that AAV5-hGRK1 is a safe and effective AAV serotype/promoter combination for targeting therapeutic transgene expression protein to rods and cones in a clinical setting.
Related JoVE Video
An acidic oligopeptide displayed on AAV2 improves axial muscle tropism after systemic delivery.
Genet Vaccines Ther
Show Abstract
Hide Abstract
The appropriate tropism of adeno-associated virus (AAV) vectors that are systemically injected is crucial for successful gene therapy when local injection is not practical. Acidic oligopeptides have been shown to enhance drug delivery to bones.
Related JoVE Video
Retrograde gene delivery to hypoglossal motoneurons using adeno-associated virus serotype 9.
Hum Gene Ther Methods
Show Abstract
Hide Abstract
Retrograde viral transport (i.e., muscle to motoneuron) enables targeted gene delivery to specific motor pools. Recombinant adeno-associated virus serotype 9 (AAV9) robustly infects motoneurons, but the retrograde transport capabilities of AAV9 have not been systematically evaluated. Accordingly, we evaluated the retrograde transduction efficiency of AAV9 after direct tongue injection in 129SVE mice as well as a mouse model that displays neuromuscular pathology (Gaa(-/-)). Hypoglossal (XII) motoneurons were histologically evaluated 8 weeks after tongue injection with AAV9 encoding green fluorescent protein (GFP) with expression driven by the chicken ?-actin promoter (1 × 10(11) vector genomes). On average, GFP expression was detected in 234 ± 43 XII motoneurons 8 weeks after AAV9-GFP tongue injection. In contrast, tongue injection with a highly efficient retrograde anatomical tracer (cholera toxin ? subunit, CT-?) resulted in infection of 818 ± 88 XII motoneurons per mouse. The retrograde transduction efficiency of AAV9 was similar between the 129SVE mice and those with neuromuscular disease (Gaa(-/-)). Routine hematoxylin and eosin staining and cluster of differentiation (CD) immunostaining for T cells (CD3) indicated no persistent inflammation within the tongue or XII nucleus after AAV9 injection. Additional experiments indicated no adverse effects of AAV9 on the pattern of breathing. We conclude that AAV9 can retrogradely infect a significant portion of a given motoneuron pool in normal and dystrophic mice, and that its transduction efficiency is approximately 30% of what can be achieved with CT-?.
Related JoVE Video
Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy.
Mol. Ther.
Show Abstract
Hide Abstract
Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD(-/-) mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD(-/-) mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD(-/-) mice maintained euglycemia, whereas untreated VLCAD(-/-) mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.
Related JoVE Video
Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells.
J. Immunol.
Show Abstract
Hide Abstract
The durable alloantibody responses that develop in organ transplant patients indicate long-lived plasma cell output from T-dependent germinal centers (GCs), but which of the two pathways of CD4 T cell allorecognition is responsible for generating allospecific T follicular helper cells remains unclear. This was addressed by reconstituting T cell-deficient mice with monoclonal populations of TCR-transgenic CD4 T cells that recognized alloantigen only as conformationally intact protein (direct pathway) or only as self-restricted allopeptide (indirect pathway) and then assessing the alloantibody response to a heart graft. Recipients reconstituted with indirect-pathway CD4 T cells developed long-lasting IgG alloantibody responses, with splenic GCs and allospecific bone marrow plasma cells readily detectable 50 d after heart transplantation. Differentiation of the transferred CD4 T cells into T follicular helper cells was confirmed by follicular localization and by acquisition of signature phenotype. In contrast, IgG alloantibody was not detectable in recipient mice reconstituted with direct-pathway CD4 T cells. Neither prolongation of the response by preventing NK cell killing of donor dendritic cells nor prior immunization to develop CD4 T cell memory altered the inability of the direct pathway to provide allospecific B cell help. CD4 T cell help for GC alloantibody responses is provided exclusively via the indirect-allorecognition pathway.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.