JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Discordant results obtained with Francisella tularensis during in vitro and in vivo immunological studies are attributable to compromised bacterial structural integrity.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Francisella tularensis (Ft) is a highly infectious intracellular pathogen and the causative agent of tularemia. Because Ft can be dispersed via small droplet-aerosols and has a very low infectious dose it is characterized as a category A Select Agent of biological warfare. Respiratory infection with the attenuated Live Vaccine Strain (LVS) and the highly virulent SchuS4 strain of Ft engenders intense peribronchiolar and perivascular inflammation, but fails to elicit select pro-inflammatory mediators (e.g., TNF, IL-1?, IL-6, IL-12, and IFN-?) within the first ~72 h. This in vivo finding is discordant with the principally TH1-oriented response to Ft frequently observed in cell-based studies wherein the aforementioned cytokines are produced. An often overlooked confounding factor in the interpretation of experimental results is the influence of environmental cues on the bacteriums capacity to elicit certain host responses. Herein, we reveal that adaptation of Ft to its mammalian host imparts an inability to elicit select pro-inflammatory mediators throughout the course of infection. Furthermore, in vitro findings that non-host adapted Ft elicits such a response from host cells reflect aberrant recognition of the DNA of structurally-compromised bacteria by AIM2-dependent and -independent host cell cytosolic DNA sensors. Growth of Ft in Muller-Hinton Broth or on Muller-Hinton-based chocolate agar plates or genetic mutation of Ft was found to compromise the structural integrity of the bacterium thus rendering it capable of aberrantly eliciting pro-inflammatory mediators (e.g., TNF, IL-1?, IL-6, IL-12, and IFN-?). Our studies highlight the profound impact of different growth conditions on host cell response to infection and demonstrate that not all in vitro-derived findings may be relevant to tularemia pathogenesis in the mammalian host. Rational development of a vaccine and immunotherapeutics can only proceed from a foundation of knowledge based upon in vitro findings that recapitulate those observed during natural infection.
Related JoVE Video
Reduced immune response to Borrelia burgdorferi in the absence of ?? T cells.
Infect. Immun.
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
Little is known regarding the function of ?? T cells, although they accumulate at sites of inflammation in infections and autoimmune disorders. We previously observed that ?? T cells in vitro are activated by Borrelia burgdorferi in a TLR2-dependent manner. We now observe that the activated ?? T cells can in turn stimulate dendritic cells in vitro to produce cytokines and chemokines that are important for the adaptive immune response. This suggested that in vivo ?? T cells may assist in activating the adaptive immune response. We examined this possibility in vivo and observed that ?? T cells are activated and expand in number during Borrelia infection, and this was reduced in the absence of TLR2. Furthermore, in the absence of ?? T cells, there was a significantly blunted response of adaptive immunity, as reflected in reduced expansion of T and B cells and reduced serum levels of anti-Borrelia antibodies, cytokines, and chemokines. This paralleled a greater Borrelia burden in ??-deficient mice as well as more cardiac inflammation. These findings are consistent with a model of ?? T cells functioning to promote the adaptive immune response during infection.
Related JoVE Video
Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia.
J. Leukoc. Biol.
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
Tularemia is a vector-borne zoonosis caused by Ft, a Gram-negative, facultative intracellular bacterium. Ft exists in two clinically relevant forms, the European biovar B (holarctica), which produces acute, although mild, self-limiting infections, and the more virulent United States biovar A (tularensis), which is often associated with pneumonic tularemia and more severe disease. In a mouse model of tularemia, respiratory infection with the virulence-attenuated Type B (LVS) or highly virulent Type A (SchuS4) strain engenders peribronchiolar and perivascular inflammation. Paradoxically, despite an intense neutrophilic infiltrate and high bacterial burden, T(h)1-type proinflammatory cytokines (e.g., TNF, IL-1?, IL-6, and IL-12) are absent within the first ?72 h of pulmonary infection. It has been suggested that the bacterium has the capacity to actively suppress or block NF-?B signaling, thus causing an initial delay in up-regulation of inflammatory mediators. However, our previously published findings and those presented herein contradict this paradigm and instead, strongly support an alternative hypothesis. Rather than blocking NF-?B, Ft actually triggers TLR2-dependent NF-?B signaling, resulting in the development and activation of tDCs and the release of anti-inflammatory cytokines (e.g., IL-10 and TGF-?). In turn, these cytokines stimulate development and proliferation of T(regs) that may restrain T(h)1-type proinflammatory cytokine release early during tularemic infection. The highly regulated and overall anti-inflammatory milieu established in the lung is permissive for unfettered growth and survival of Ft. The capacity of Ft to evoke such a response represents an important immune-evasive strategy.
Related JoVE Video
Host-adaptation of Francisella tularensis alters the bacteriums surface-carbohydrates to hinder effectors of innate and adaptive immunity.
PLoS ONE
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacteriums mammalian, extracellular phase.
Related JoVE Video
Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-beta.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Phagocytosed Borrelia burgdorferi (Bb) induces inflammatory signals that differ both quantitatively and qualitatively from those generated by spirochetal lipoproteins interacting with Toll-like receptor (TLR) 1/2 on the surface of human monocytes. Of particular significance, and in contrast to lipoproteins, internalized spirochetes induce transcription of IFN-?. Using inhibitory immunoregulatory DNA sequences (IRSs) specific to TLR7, TLR8, and TLR9, we show that the TLR8 inhibitor IRS957 significantly diminishes production of TNF-?, IL-6, and IL-10 and completely abrogates transcription of IFN-? in Bb-stimulated monocytes. We demonstrate that live Bb induces transcription of TLR2 and TLR8, whereas IRS957 interferes with their transcriptional regulation. Using confocal and epifluorescence microscopy, we show that baseline TLR expression in unstimulated monocytes is greater for TLR2 than for TLR8, whereas expression of both TLRs increases significantly upon stimulation with live spirochetes. By confocal microscopy, we show that TLR2 colocalization with Bb coincides with binding, uptake, and formation of the phagosomal vacuole, whereas recruitment of both TLR2 and TLR8 overlaps with degradation of the spirochete. We provide evidence that IFN regulatory factor (IRF) 7 is translocated into the nucleus of Bb-infected monocytes, suggesting its activation through phosphorylation. Taken together, these findings indicate that the phagosome is an efficient platform for the recognition of diverse ligands; in the case of Bb, phagosomal signaling involves a cooperative interaction between TLR2 and TLR8 in pro- and antiinflammatory cytokine responses, whereas TLR8 is solely responsible for IRF7-mediated induction of IFN-?.
Related JoVE Video
CD14 signaling reciprocally controls collagen deposition and turnover to regulate the development of lyme arthritis.
Am. J. Pathol.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
CD14 is a glycosylphosphatidylinositol-anchored protein expressed primarily on myeloid cells (eg, neutrophils, macrophages, and dendritic cells). CD14(-/-) mice infected with Borrelia burgdorferi, the causative agent of Lyme disease, produce more proinflammatory cytokines and present with greater disease and bacterial burden in infected tissues. Recently, we uncovered a novel mechanism whereby CD14(-/-) macrophages mount a hyperinflammatory response, resulting from their inability to be tolerized by B. burgdorferi. Paradoxically, CD14 deficiency is associated with greater bacterial burden despite the presence of highly activated neutrophils and macrophages and elevated levels of cytokines with potent antimicrobial activities. Killing and clearance of Borrelia, especially in the joints, depend on the recruitment of neutrophils. Neutrophils can migrate in response to chemotactic gradients established through the action of gelatinases (eg, matrix metalloproteinase 9), which degrade collagen components of the extracellular matrix to generate tripeptide fragments of proline-glycine-proline. Using a mouse model of Lyme arthritis, we demonstrate that CD14 deficiency leads to decreased activation of matrix metalloproteinase 9, reduced degradation of collagen, and diminished recruitment of neutrophils. This reduction in neutrophil numbers is associated with greater numbers of Borrelia in infected tissues. Variation in the efficiency of neutrophil-mediated clearance of B. burgdorferi may underlie differences in the severity of Lyme arthritis observed in the patient population and suggests avenues for development of adjunctive therapy designed to augment host immunity.
Related JoVE Video
GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages.
Infect. Immun.
PUBLISHED: 02-01-2010
Show Abstract
Hide Abstract
Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 microg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 microg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 microg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.
Related JoVE Video
Identification of Francisella tularensis live vaccine strain CuZn superoxide dismutase as critical for resistance to extracellularly generated reactive oxygen species.
J. Bacteriol.
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O(2)(-)). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodC (DeltasodC) and a F. tularensis DeltasodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB DeltasodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-gamma)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis DeltasodC and sodB DeltasodC mutants showed attenuated intramacrophage survival in IFN-gamma-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the DeltasodC mutant or inhibiting the IFN-gamma-dependent production of O(2)(-) or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The DeltasodC and sodB DeltasodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the DeltasodC mutant was restored in ifn-gamma(-/-), inos(-/-), and phox(-/-) mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.
Related JoVE Video
CD14 signaling restrains chronic inflammation through induction of p38-MAPK/SOCS-dependent tolerance.
PLoS Pathog.
PUBLISHED: 08-07-2009
Show Abstract
Hide Abstract
Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes.
Related JoVE Video
Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
Show Abstract
Hide Abstract
The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 10(9) or 1 × 10(10) CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.