JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Age-Related Changes in Rat Dermal Extracellular Matrix Composition Affect the Distribution of Plasma Proteins as a Function of Size and Charge.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 11-02-2014
Show Abstract
Hide Abstract
Collagen and glycosaminoglycans (GAGs) constituting the extracellular matrix may limit the space available and thus exclude macromolecules from a fraction of the interstitial fluid phase. This exclusion phenomenon is of importance for transcapillary fluid and solute exchange. The purpose of the study was to examine the range of interstitial exclusion in rat skin by using probes within a span of molecular weights and electrical charge, and also to test if a change in interstitial composition occurring as a consequence of aging affected exclusion. To this end we used a novel approach, involving the exact determination of albumin concentration and mass in interstitial fluid and tissue eluate by high performance liquid chromatography and thereafter expressing the corresponding numbers relative to albumin for a set of probe proteins assessed by quantitative proteomics. Albumin was excluded from 55 ± 4% (n=8) of the extracellular fluid phase. There was a highly significant positive correlation between probe Stokes-Einstein (SE) radius and fractional excluded volume (VEF) described by VEF = 0.078*SE radius + 0.269 (p<0.001), and oppositely, a negative correlation between probe isoelectric point (pI) and exclusion for proteins with comparable size, VEF = -0.036 * pI +0.719 (p=0.04). Aging resulted in a significant reduction in skin hydration and sulphated GAGs and a moderate increase in hyaluronan, and a corresponding reduced VEF for albumin and the other macromolecular probes. Our findings suggest that the changes in the extracellular matrix in aged skin may result in delayed adjustments of fluid perturbations and reduced ability for salt storage.
Related JoVE Video
Fibroblast ?11?1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We have previously shown that fibroblast expression of ?11?1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (?11+/+) or with a deletion (?11-/-) in integrin ?11 gene. Our data show that ?11-/-/A549 spheroids are larger than ?11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in ?11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of ?11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin ?11?1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast ?11?1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal ?11?1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy.
Related JoVE Video
Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.
J. Clin. Invest.
PUBLISHED: 04-05-2013
Show Abstract
Hide Abstract
The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.
Related JoVE Video
Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 11-18-2011
Show Abstract
Hide Abstract
There is a lack of available methods to noninvasively quantify lymphatic function in small experimental animals, a necessity for studies on lymphatic system pathophysiology. We present a new method to quantify lymph flow in mice and rats, based on optically monitoring the depot clearance of near-infrared fluorescently labeled albumin and subsequent calculation of removal rate constants (k). BSA was conjugated with Alexa680 NHS ester and remained stable in protein-rich solutions without free dye dissociation. To assess lymph flow, mice or rats were imaged every 30 or 60 min during a 3- to 6-h period following an intradermal injection of 0.5 or 1 ?l Alexa680-albumin. Mice were awake between measurements, whereas rats were anesthetized throughout the experiment. The k, a parameter defined as equivalent to lymph flow, was calculated from the slopes of the resultant log-linear washout curves and averaged -0.40 ± 0.03 and -0.30 ± 0.02%/min for control C57BL/6 and C3H mice, respectively. Local administration of the vasoconstrictor endothelin-1 in mice led to a significant reduction in k, whereas overhydration in rats increased k, reflecting the coupling between capillary filtration and lymph flow. Furthermore, k was 50% of wild type in lymphedema Chy mice where dermal lymphatics are absent. We conclude that lymph flow can be determined as its rate constant k by optical imaging of depot clearance of submicroliter amounts of Alexa680-albumin. The method offers a minimally invasive, reproducible, and simple alternative to assess lymphatic function in mice and rats.
Related JoVE Video
Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume.
J. Physiol. (Lond.)
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
Atrial natriuretic peptide (ANP) via its guanylyl cyclase-A (GC-A) receptor participates in regulation of arterial blood pressure and vascular volume. Previous studies demonstrated that concerted renal diuretic/natriuretic and endothelial permeability effects of ANP cooperate in intravascular volume regulation. We show that the microvascular endothelial contribution to the hypovolaemic action of ANP can be measured by the magnitude of the ANP-induced increase in blood-to-tissue albumin transport, measured as plasma albumin clearance corrected for intravascular volume change, relative to the corresponding increase in ANP-induced renal water excretion. We used a two-tracer method with isotopically labelled albumin to measure clearances in skin and skeletal muscle of: (i) C57BL6 mice; (ii) mice with endothelium-restricted deletion of GC-A (floxed GC-A x tie2-Cre: endothelial cell (EC) GC-A knockout (KO)); and (iii) control littermates (floxed GC-A mice with normal GC-A expression levels). Comparison of albumin clearances in hypervolaemic EC GC-A KO mice with normovolaemic littermates demonstrated that skeletal muscle albumin clearance with ANP treatment accounts for at most 30% of whole body clearance required for ANP to regulate plasma volume. Skin microcirculation responded to ANP similarly. Measurements of permeability to a high molecular mass contrast agent (35 kD Gadomer) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) enabled repeated measures in individual animals and confirmed small increases in muscle and skin microvascular permeability after ANP. These quantitative methods will enable further evaluation of the contribution of ANP-dependent microvascular beds (such as gastro-intestinal tract) to plasma volume regulation.
Related JoVE Video
Isolation of interstitial fluid and demonstration of local proinflammatory cytokine production and increased absorptive gradient in chronic peritoneal dialysis.
Am. J. Physiol. Renal Physiol.
Show Abstract
Hide Abstract
In peritoneal dialysis (PD) patients, the frequent exposure to "unphysiological" dialysis fluids elicits a chronic state of a low-grade peritoneal inflammation leading to interstitial matrix remodeling and angiogenesis. Proinflammatory cytokines are important regulators involved in this inflammatory process that ultimately leads to dysfunction of the peritoneum as a dialysis membrane. We aimed to measure the local concentrations of proinflammatory cytokines in the peritoneal interstitial fluid (IF). Furthermore, we wanted to assess how the driving forces for fluid and solute exchanges are affected in a remodeled interstitial matrix and thus measured the colloid osmotic pressure (COP) gradient in rats that were exposed to chronic PD. After 8 wk of peritoneal dialysis, IF from peritoneum was isolated using a centrifugation method, and was analyzed for cytokine content and COP along with plasma. For several of the proinflammatory cytokines there were gradients from IF to plasma, showing local production. For some cytokines, the concentration in IF was increased severalfold, whereas IL-18 was increased systemically due to PD. Furthermore, the presence of the catheter per se seemed to increase cytokine levels. COP in IF was significantly decreased in the PD group, while collagen and hyaluronan content was increased. Collectively, our data suggest that the increased levels of proinflammatory cytokines after PD may be an integral component of the development of fibrosis and angiogenesis commonly seen in PD patients, and the decreased COP in IF after chronic PD may shift the Starling equilibrium across peritoneal capillaries to an absorptive state.
Related JoVE Video
Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1.
J. Proteome Res.
Show Abstract
Hide Abstract
The spleen is a part of the immune system and is involved in the response to a systemic inflammation induced by blood borne pathogens that may induce sepsis. Knowledge about the protein composition of the spleen microenvironment in a control situation and during systemic inflammation may contribute to our understanding of the pathophysiology of sepsis. To our knowledge, the proteome of the fluid phase of the spleen microenvironment has not previously been investigated. In order to access the proximal fluid surrounding the splenic cells, we collected postnodal efferent spleen lymph from rats by cannulation, and spleen interstitial fluid (IF) by centrifugation. The origin of the isolated spleen IF was assessed by the extracellular tracer (51)Cr-EDTA and the plasma tracer (125)I-HSA. Spleen lymph, IF, and plasma samples were collected during lipopolysaccharide (LPS) induced systemic inflammation and analyzed using a cytokine multiplex assay and, for the first time, using label-free mass spectrometry based proteomics. The concentrations of TNF-?, IL-1?, IL-6, and IL-10 increased severalfold in all fluids after LPS exposure. In total, 281, 201, and 236 proteins were identified in lymph, IF, and plasma, respectively, and several of these were detected after LPS only. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) was detected by proteomics (the pro- region) in lymph only after LPS. ADAMTS1 was assessed by ELISA (the metalloproteinase domain), and the concentration was significantly higher in IF and lymph than in plasma in a control situation, showing local production in the spleen. A dramatic increase in ADAMTS1 was detected in lymph, IF, and plasma after LPS exposure. In conclusion, the procedures we used to isolate IF and lymph from the spleen during LPS enabled detection of locally produced proteins. Furthermore, we have demonstrated that the inflammatory proteome is different in the spleen microenvironment when compared to that in plasma.
Related JoVE Video
Fibroblast EXT1-levels influence tumor cell proliferation and migration in composite spheroids.
PLoS ONE
Show Abstract
Hide Abstract
Stromal fibroblasts are important determinants of tumor cell behavior. They act to condition the tumor microenvironment, influence tumor growth, support tumor angiogenesis and affect tumor metastasis. Heparan sulfate proteoglycans, present both on tumor and stromal cells, interact with a large number of ligands including growth factors, their receptors, and structural components of the extracellular matrix. Being ubiquitously expressed in the tumor microenvironment heparan sulfate proteoglycans are candidates for playing central roles in tumor-stroma interactions. The objective of this work was to investigate the role of heparan sulfate expressed by stromal fibroblasts in modulating the growth of tumor cells and in controlling the interstitial fluid pressure in a 3-D model.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.