JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Best practices in bioinformatics training for life scientists.
Brief. Bioinformatics
PUBLISHED: 06-25-2013
Show Abstract
Hide Abstract
The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.
Related JoVE Video
iAnn: an event sharing platform for the life sciences.
Bioinformatics
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services. Thus, once an iAnn widget is incorporated into a website, it permanently shows timely relevant information as if it were native to the remote site. At the same time, announcements submitted to the repository are automatically disseminated to all portals that query the system. To facilitate the visualization of announcements, iAnn provides powerful filtering options and views, integrated in Google Maps and Google Calendar. All iAnn widgets are freely available.
Related JoVE Video
Computational and functional analysis of the androgen receptor antagonist atraric acid and its derivatives.
Anticancer Agents Med Chem
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Androgen receptor (AR) antagonists are important compounds for the treatment of prostate cancer (PCa). The atraric acid (AA), a natural compound, binds to the AR and acts as a specific AR antagonist. Interestingly, AA represents a novel chemical platform that could serve as a potential basis for new AR antagonists. Therefore, one objective of this study was to analyze the chemical/structural requirements for AR antagonism and to obtain predictions of where and how AA binds to the AR. Further, this study describes the chemical synthesis of 12 AA derivatives and their analysis using a combination of computational and functional assays. Functional analysis of AA derivatives indicated that none activated the AR. Both the para-hydroxyl group and the benzene ortho- and the meta-methyl groups of AA appeared to be essential to antagonize androgen-activated AR activity. Furthermore, extension of the hydrophobic side chain of AA led to slightly stronger AR antagonism. In silico data suggest that modifications to the basic AA structure change the hydrogen-bonding network with the AR ligand binding domain (LBD), so that the para-hydroxyl group of AA forms a hydrogen bond with the LBD, confirming the functional importance of this group for AR antagonism. Moreover, in silico modeling also suggested that the ortho- and meta- methyl groups of AA interact with hydrophobic residues of the ligand pocket of AR, which might explain their functional importance for antagonism. Thus, these studies identify the chemical groups of AA that play key roles in allowing the AA-based chemical platform to act as an AR antagonist.
Related JoVE Video
Bioinformatics Training Network (BTN): a community resource for bioinformatics trainers.
Brief. Bioinformatics
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
Funding bodies are increasingly recognizing the need to provide graduates and researchers with access to short intensive courses in a variety of disciplines, in order both to improve the general skills base and to provide solid foundations on which researchers may build their careers. In response to the development of high-throughput biology, the need for training in the field of bioinformatics, in particular, is seeing a resurgence: it has been defined as a key priority by many Institutions and research programmes and is now an important component of many grant proposals. Nevertheless, when it comes to planning and preparing to meet such training needs, tension arises between the reward structures that predominate in the scientific community which compel individuals to publish or perish, and the time that must be devoted to the design, delivery and maintenance of high-quality training materials. Conversely, there is much relevant teaching material and training expertise available worldwide that, were it properly organized, could be exploited by anyone who needs to provide training or needs to set up a new course. To do this, however, the materials would have to be centralized in a database and clearly tagged in relation to target audiences, learning objectives, etc. Ideally, they would also be peer reviewed, and easily and efficiently accessible for downloading. Here, we present the Bioinformatics Training Network (BTN), a new enterprise that has been initiated to address these needs and review it, respectively, to similar initiatives and collections.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.