JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A conserved flagella-associated protein in Chlamydomonas, FAP234, is essential for axonemal localization of tubulin polyglutamylase TTLL9.
Mol. Biol. Cell
PUBLISHED: 11-06-2013
Show Abstract
Hide Abstract
Tubulin undergoes various posttranslational modifications, including polyglutamylation, which is catalyzed by enzymes belonging to the tubulin tyrosine ligase-like protein (TTLL) family. A previously isolated Chlamydomonas reinhardtii mutant, tpg1, carries a mutation in a gene encoding a homologue of mammalian TTLL9 and displays lowered motility because of decreased polyglutamylation of axonemal tubulin. Here we identify a novel tpg1-like mutant, tpg2, which carries a mutation in the gene encoding FAP234, a flagella-associated protein of unknown function. Immunoprecipitation and sucrose density gradient centrifugation experiments show that FAP234 and TTLL9 form a complex. The mutant tpg1 retains FAP234 in the cell body and flagellar matrix but lacks it in the axoneme. In contrast, tpg2 lacks both TTLL9 and FAP234 in all fractions. In fla10, a temperature-sensitive mutant deficient in intraflagellar transport (IFT), both TTLL9 and FAP234 are lost from the flagellum at nonpermissive temperatures. These and other results suggest that FAP234 functions in stabilization and IFT-dependent transport of TTLL9. Both TTLL9 and FAP234 are conserved in most ciliated organisms. We propose that they constitute a polyglutamylation complex specialized for regulation of ciliary motility.
Related JoVE Video
[A case of anal variceal bleeding successfully treated with endoscopic injection sclerotherapy].
Nihon Shokakibyo Gakkai Zasshi
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
We report a case of anal variceal bleeding successfully treated with endoscopic injection sclerotherapy (EIS). A 64-year-old man with alcoholic liver cirrhosis was hospitalized because of repeated anal bleeding. Colonoscopy revealed external anal varices connecting with rectal varices. Three days after admission, external anal variceal bleeding was observed. Angiography revealed that the anorectal varices formed by hepatofugal inferior mesenteric vein drained into the internal iliac vein. On angiography, the variceal blood flow rate was extremely low, therefore we performed EIS. Seven days after therapy, thrombosis of anorectal varices was observed.
Related JoVE Video
Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma.
J. Gastroenterol.
PUBLISHED: 01-19-2013
Show Abstract
Hide Abstract
The rate of onset of hepatocellular carcinoma (HCC) in patients with nonalcoholic steatohepatitis (NASH) has been reported recently to be comparable to that of patients with chronic hepatitis C. However, the precise mechanism contributing to carcinogenesis in the former remains unclear. Although increased oxidative stress is presumed to play a role in carcinogenesis in patients with NASH, this relationship remains to be directly proven. In this study, we investigated the involvement of oxidative DNA damage in hepatocarcinogenesis in patients with NASH.
Related JoVE Video
Properties of ultrasonic waves in bovine bone marrow.
Ultrasound Med Biol
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
We investigated the properties of ultrasonic waves in bovine bone marrow. Six bone marrow samples were obtained from different parts (proximal, middle and distal) of the shafts of two bovine femora without destruction. The measured frequency range was 3 to 10 MHz, and the temperature range was 15 to 40°C. Both wave velocity and attenuation coefficient in bone marrow always decreased as temperature increased. The velocity ranged from 1400 to 1610 m/s and attenuation coefficient ranged from 4 to 16 dB/cm. Wave velocities in bone marrow were similar to those in water, whereas the temperature dependences were different, and the wave attenuation coefficients were much higher than those in water. The dependence of velocity on temperature changed slightly around 23-24°C, where a transition from soft gel to oily liquid occurred. The transition temperature was confirmed by differential scanning calorimetry (DSC). Below this transition temperature, positive velocity dispersion was observed.
Related JoVE Video
Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study.
J. Acoust. Soc. Am.
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
The influence of cancellous bone microstructure on the ultrasonic wave propagation of fast and slow waves was experimentally investigated. Four spherical cancellous bone specimens extracted from two bovine femora were prepared for the estimation of acoustical and structural anisotropies of cancellous bone. In vitro measurements were performed using a PVDF transducer (excited by a single sinusoidal wave at 1 MHz) by rotating the spherical specimens. In addition, the mean intercept length (MIL) and bone volume fraction (BV/TV) were estimated by X-ray micro-computed tomography. Separation of the fast and slow waves was clearly observed in two specimens. The fast wave speed was strongly dependent on the wave propagation direction, with the maximum speed along the main trabecular direction. The fast wave speed increased with the MIL. The slow wave speed, however, was almost constant. The fast wave speeds were statistically higher, and their amplitudes were statistically lower in the case of wave separation than in that of wave overlap.
Related JoVE Video
Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins.
Curr. Biol.
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
Tubulin polyglutamylation is a modification that adds multiple glutamates to the gamma-carboxyl group of a glutamate residue in the C-terminal tails of alpha- and beta-tubulin [1, 2]. This modification has been implicated in the regulation of axonal transport and ciliary motility. However, its molecular function in cilia remains unknown. Here, using a novel Chlamydomonas reinhardtii mutant (tpg1) that lacks a homolog of human TTLL9, a glutamic acid ligase enzyme [3], we found that the lack of a long polyglutamate side chain in alpha-tubulin moderately weakens flagellar motility without noticeably impairing the axonemal structure. Furthermore, the double mutant of tpg1 with oda2, a mutation that leads to loss of outer-arm dynein, completely lacks motility. More surprisingly, when treated with protease and ATP, the axoneme of this paralyzed double mutant displayed faster microtubule sliding than the motile oda2 axoneme. These and other results suggest that polyglutamylation directly regulates microtubule-dynein interaction mainly by modulating the function of inner-arm dyneins.
Related JoVE Video
Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity.
J. Exp. Med.
PUBLISHED: 08-17-2009
Show Abstract
Hide Abstract
Pathogens are sensed by Toll-like receptors (TLRs) expressed in leukocytes in the innate immune system. However, excess stimulation of TLR pathways is supposed to be connected with provocation of autoimmunity. We show that paired immunoglobulin (Ig)-like receptor B (PIR-B), an immunoreceptor tyrosine-based inhibitory motif-harboring receptor for major histocompatibility class I molecules, on relatively primitive B cells, B-1 cells, suppresses TLR9 signaling via Brutons tyrosine kinase (Btk) dephosphorylation, which leads to attenuated activation of nuclear factor kappaB p65RelA but not p38 or Erk, and blocks the production of natural IgM antibodies, including anti-IgG Fc autoantibodies, particularly rheumatoid factor. The autoantibody production in PIR-B-deficient (Pirb(-/-)) mice was further augmented in combination with the Fas(lpr) mutation, which might be linked to the development of autoimmune glomerulonephritis. These results show the critical link between TLR9-mediated sensing and a simultaneously evoked, PIR-B-mediated inhibitory circuit with a Btk intersection in B-1 cells, and suggest a novel way toward preventing pathogenic natural autoantibody production.
Related JoVE Video
Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex.
Cytoskeleton (Hoboken)
Show Abstract
Hide Abstract
The tpg1 mutant of Chlamydomonas lacks the tubulin polyglutamylase TTLL9 and is deficient in flagellar tubulin polyglutamylation. It exhibits slow swimming, whereas the double mutant with oda2 (a slow-swimming mutant that lacks outer-arm dynein) is completely nonmotile. Thus, tubulin polyglutamylation must be important for the functioning of inner-arm dynein(s). In this study, we show that the tpg1 mutation only slightly affects the motility of mutants that lack dynein "e," one of the seven species of major inner-arm dyneins, whereas it greatly reduces the motility of mutants lacking other inner-arm dynein species. This suggests that dynein e is the main target of motility regulation by tubulin polyglutamylation. Furthermore, the motility of various mutants in the background of the tpg1 mutation raises the possibility that tubulin polyglutamylation also affects the dynein regulatory complex, a dynein e-associated key regulator of flagellar motility, which possibly constitutes the interdoublet (nexin) link. Tubulin polyglutamylation thus may play a central role in the regulation of ciliary and flagellar motility. © 2012 Wiley Periodicals, Inc.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.