JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Spectral signatures of reorganised brain networks in disorders of consciousness.
PLoS Comput. Biol.
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Theoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness. Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could support cognitive function and consciousness despite profound behavioural impairment.
Related JoVE Video
Inducing task-relevant responses to speech in the sleeping brain.
Curr. Biol.
PUBLISHED: 07-07-2014
Show Abstract
Hide Abstract
Falling asleep leads to a loss of sensory awareness and to the inability to interact with the environment [1]. While this was traditionally thought as a consequence of the brain shutting down to external inputs, it is now acknowledged that incoming stimuli can still be processed, at least to some extent, during sleep [2]. For instance, sleeping participants can create novel sensory associations between tones and odors [3] or reactivate existing semantic associations, as evidenced by event-related potentials [4-7]. Yet, the extent to which the brain continues to process external stimuli remains largely unknown. In particular, it remains unclear whether sensory information can be processed in a flexible and task-dependent manner by the sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task-relevant information from external stimuli and covertly prepare for appropriate motor responses.
Related JoVE Video
Volitional electromyographic responses in disorders of consciousness.
Brain Inj
PUBLISHED: 06-09-2014
Show Abstract
Hide Abstract
The aim of the study was to validate the use of electromyography (EMG) for detecting responses to command in patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS) or in minimally conscious state (MCS).
Related JoVE Video
Losing the left side of the world: rightward shift in human spatial attention with sleep onset.
Sci Rep
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
Unilateral brain damage can lead to a striking deficit in awareness of stimuli on one side of space called Spatial Neglect. Patient studies show that neglect of the left is markedly more persistent than of the right and that its severity increases under states of low alertness. There have been suggestions that this alertness-spatial awareness link may be detectable in the general population. Here, healthy human volunteers performed an auditory spatial localisation task whilst transitioning in and out of sleep. We show, using independent electroencephalographic measures, that normal drowsiness is linked with a remarkable unidirectional tendency to mislocate left-sided stimuli to the right. The effect may form a useful healthy model of neglect and help in understanding why leftward inattention is disproportionately persistent after brain injury. The results also cast light on marked changes in conscious experience before full sleep onset.
Related JoVE Video
How embodied is action language? Neurological evidence from motor diseases.
Cognition
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
Although motor-language coupling is now being extensively studied, its underlying mechanisms are not fully understood. In this sense, a crucial opposition has emerged between the non-representational and the representational views of embodiment. The former posits that action language is grounded on the non-brain motor system directly engaged by musculoskeletal activity - i.e., peripheral involvement of ongoing actions. Conversely, the latter proposes that such grounding is afforded by the brain's motor system - i.e., activation of neural areas representing motor action. We addressed this controversy through the action-sentence compatibility effect (ACE) paradigm, which induces a contextual coupling of motor actions and verbal processing. ACEs were measured in three patient groups - early Parkinson's disease (EPD), neuromyelitis optica (NMO), and acute transverse myelitis (ATM) patients - as well as their respective healthy controls. NMO and ATM constitute models of injury to non-brain motor areas and the peripheral motor system, whereas EPD provides a model of brain motor system impairment. In our study, EPD patients exhibited impaired ACE and verbal processing relative to healthy participants, NMO, and ATM patients. These results indicate that the processing of action-related words is mainly subserved by a cortico-subcortical motor network system, thus supporting a brain-based embodied view on action language. More generally, our findings are consistent with contemporary perspectives for which action/verb processing depends on distributed brain networks supporting context-sensitive motor-language coupling.
Related JoVE Video
How do you feel when you can't feel your body? Interoception, functional connectivity and emotional processing in depersonalization-derealization disorder.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Depersonalization-Derealization Disorder (DD) typically manifests as a disruption of body self-awareness. Interoception -defined as the cognitive processing of body signals- has been extensively considered as a key processing for body self-awareness. In consequence, the purpose of this study was to investigate whether there are systematic differences in interoception between a patient with DD and controls that might explain the disembodiment symptoms suffered in this disease. To assess interoception, we utilized a heartbeat detection task and measures of functional connectivity derived from fMRI networks in interoceptive/exteroceptivo/mind-wandering states. Additionally, we evaluated empathic abilities to test the association between interoception and emotional experience. The results showed patient's impaired performance in the heartbeat detection task when compared to controls. Furthermore, regarding functional connectivity, we found a lower global brain connectivity of the patient relative to controls only in the interoceptive state. He also presented a particular pattern of impairments in affective empathy. To our knowledge, this is the first experimental research that assesses the relationship between interoception and DD combining behavioral and neurobiological measures. Our results suggest that altered neural mechanisms and cognitive processes regarding body signaling might be engaged in DD phenomenology. Moreover, our study contributes experimental data to the comprehension of brain-body interactions and the emergence of self-awareness and emotional feelings.
Related JoVE Video
Monetary rewards modulate inhibitory control.
Front Hum Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a "kick start effect" over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate a dynamical behavioral inhibition capacity in humans, as illustrated by the reward magnitude modulation and initial reward history effects.
Related JoVE Video
The man who feels two hearts: the different pathways of interoception.
Soc Cogn Affect Neurosci
PUBLISHED: 07-24-2013
Show Abstract
Hide Abstract
Recent advances in neuroscience have provided new insights into the understanding of heart-brain interaction and communication. Cardiac information to the brain relies on two pathways, terminating in the insular cortex (IC) and anterior cingulate cortex (ACC), along with the somatosensory cortex (S1-S2). Interoception relying on these neuroanatomical pathways has been shown to modulate social cognition. We report the case study of C.S., a patient with an external heart (an extracorporeal left-univentricular cardiac assist device, LVAD). The patient was assessed with neural/behavioral measures of cardiac interoception complemented by neuropsychological and social cognition measures. The patients performance on the interoception task (heartbeat detection) seemed to be guided by signals from the artificial LVAD, which provides a somatosensory beat rather than by his endogenous heart. Cortical activity (HEP, heartbeat-evoked potential) was found decreased in comparison with normal volunteers, particularly during interoceptive states. The patient accurately performed several cognitive tasks, except for interoception-related social cognition domains (empathy, theory of mind and decision making). This evidence suggests an imbalance in the patients cardiac interoceptive pathways that enhances sensation driven by the artificial pump over that from the cardiac vagal-IC/ACC pathway. A patient with two hearts, one endogenous and one artificial, presents a unique opportunity to explore models of interoception and heart-brain interaction.
Related JoVE Video
Expectation and attention in hierarchical auditory prediction.
J. Neurosci.
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Hierarchical predictive coding suggests that attention in humans emerges from increased precision in probabilistic inference, whereas expectation biases attention in favor of contextually anticipated stimuli. We test these notions within auditory perception by independently manipulating top-down expectation and attentional precision alongside bottom-up stimulus predictability. Our findings support an integrative interpretation of commonly observed electrophysiological signatures of neurodynamics, namely mismatch negativity (MMN), P300, and contingent negative variation (CNV), as manifestations along successive levels of predictive complexity. Early first-level processing indexed by the MMN was sensitive to stimulus predictability: here, attentional precision enhanced early responses, but explicit top-down expectation diminished it. This pattern was in contrast to later, second-level processing indexed by the P300: although sensitive to the degree of predictability, responses at this level were contingent on attentional engagement and in fact sharpened by top-down expectation. At the highest level, the drift of the CNV was a fine-grained marker of top-down expectation itself. Source reconstruction of high-density EEG, supported by intracranial recordings, implicated temporal and frontal regions differentially active at early and late levels. The cortical generators of the CNV suggested that it might be involved in facilitating the consolidation of context-salient stimuli into conscious perception. These results provide convergent empirical support to promising recent accounts of attention and expectation in predictive coding.
Related JoVE Video
From neural signatures of emotional modulation to social cognition: individual differences in healthy volunteers and psychiatric participants.
Soc Cogn Affect Neurosci
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
It is commonly assumed that early emotional signals provide relevant information for social cognition tasks. The goal of this study was to test the association between (a) cortical markers of face emotional processing and (b) social-cognitive measures, and also to build a model which can predict this association (a and b) in healthy volunteers as well as in different groups of psychiatric patients. Thus, we investigated the early cortical processing of emotional stimuli (N170, using a face and word valence task) and their relationship with the social-cognitive profiles (SCPs, indexed by measures of theory of mind, fluid intelligence, speed processing and executive functions). Group comparisons and individual differences were assessed among schizophrenia (SCZ) patients and their relatives, individuals with attention deficit hyperactivity disorder (ADHD), individuals with euthymic bipolar disorder (BD) and healthy participants (educational level, handedness, age and gender matched). Our results provide evidence of emotional N170 impairments in the affected groups (SCZ and relatives, ADHD and BD) as well as subtle group differences. Importantly, cortical processing of emotional stimuli predicted the SCP, as evidenced by a structural equation model analysis. This is the first study to report an association model of brain markers of emotional processing and SCP.
Related JoVE Video
Actigraphy assessments of circadian sleep-wake cycles in the Vegetative and Minimally Conscious States.
BMC Med
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The Vegetative and Minimally Conscious States (VS; MCS) are characterized by absent or highly disordered signs of awareness alongside preserved sleep-wake cycles. According to international diagnostic guidelines, sleep-wake cycles are assessed by means of observations of variable periods of eye-opening and eye-closure. However, there is little empirical evidence for true circadian sleep-wake cycling in these patients, and there have been no large-scale investigations of the validity of this diagnostic criterion.
Related JoVE Video
Dissociable endogenous and exogenous attention in disorders of consciousness.
Neuroimage Clin
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Recent research suggests that despite the seeming inability of patients in vegetative and minimally conscious states to generate consistent behaviour, some might possess covert awareness detectable with functional neuroimaging. These findings motivate further research into the cognitive mechanisms that might support the existence of consciousness in these states of profound neurological dysfunction. One of the key questions in this regard relates to the nature and capabilities of attention in patients, known to be related to but distinct from consciousness. Previous assays of the electroencephalographic P300 marker of attention have demonstrated its presence and potential clinical value. Here we analysed data from 21 patients and 8 healthy volunteers collected during an experimental task designed to engender exogenous or endogenous attention, indexed by the P3a and P3b components, respectively, in response to a pair of word stimuli presented amongst distractors. Remarkably, we found that the early, bottom-up P3a and the late, top-down P3b could in fact be dissociated in a patient who fitted the behavioural criteria for the vegetative state. In juxtaposition with healthy volunteers, the patients responses suggested the presence of a relatively high level of attentional abilities despite the absence of any behavioural indications thereof. Furthermore, we found independent evidence of covert command following in the patient, as measured by functional neuroimaging during tennis imagery. Three other minimally conscious patients evidenced non-discriminatory bottom-up orienting, but no top-down engagement of selective attentional control. Our findings present a persuasive case for dissociable attentional processing in behaviourally unresponsive patients, adding to our understanding of the possible levels and applications of consequent conscious awareness.
Related JoVE Video
Comment on "Preserved feedforward but impaired top-down processes in the vegetative state".
Science
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
Boly et al. (Reports, 13 May 2011, p. 858) investigated cortical connectivity patterns in patients suffering from a disorder of consciousness, using electroencephalography in an auditory oddball paradigm. We point to several inconsistencies in their data, including a failure to replicate the classical mismatch negativity. Data quality, source reconstruction, and statistics would need to be improved to support their conclusions.
Related JoVE Video
Evidence for a hierarchy of predictions and prediction errors in human cortex.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-06-2011
Show Abstract
Hide Abstract
According to hierarchical predictive coding models, the cortex constantly generates predictions of incoming stimuli at multiple levels of processing. Responses to auditory mismatches and omissions are interpreted as reflecting the prediction error when these predictions are violated. An alternative interpretation, however, is that neurons passively adapt to repeated stimuli. We separated these alternative interpretations by designing a hierarchical auditory novelty paradigm and recording human EEG and magnetoencephalographic (MEG) responses to mismatching or omitted stimuli. In the crucial condition, participants listened to frequent series of four identical tones followed by a fifth different tone, which generates a mismatch response. Because this response itself is frequent and expected, the hierarchical predictive coding hypothesis suggests that it should be cancelled out by a higher-order prediction. Three consequences ensue. First, the mismatch response should be larger when it is unexpected than when it is expected. Second, a perfectly monotonic sequence of five identical tones should now elicit a higher-order novelty response. Third, omitting the fifth tone should reveal the brains hierarchical predictions. The rationale here is that, when a deviant tone is expected, its omission represents a violation of two expectations: a local prediction of a tone plus a hierarchically higher expectation of its deviancy. Thus, such an omission should induce a greater prediction error than when a standard tone is expected. Simultaneous EEE- magnetoencephalographic recordings verify those predictions and thus strongly support the predictive coding hypothesis. Higher-order predictions appear to be generated in multiple areas of frontal and associative cortices.
Related JoVE Video
Bedside detection of awareness in the vegetative state: a cohort study.
Lancet
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
Patients diagnosed as vegetative have periods of wakefulness, but seem to be unaware of themselves or their environment. Although functional MRI (fMRI) studies have shown that some of these patients are consciously aware, issues of expense and accessibility preclude the use of fMRI assessment in most of these individuals. We aimed to assess bedside detection of awareness with an electroencephalography (EEG) technique in patients in the vegetative state.
Related JoVE Video
Sea slugs, subliminal pictures, and vegetative state patients: boundaries of consciousness in classical conditioning.
Front Psychol
PUBLISHED: 10-31-2011
Show Abstract
Hide Abstract
Classical (trace) conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency) between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports.
Related JoVE Video
Why clowns taste funny: the relationship between humor and semantic ambiguity.
J. Neurosci.
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
What makes us laugh? One crucial component of many jokes is the disambiguation of words with multiple meanings. In this functional MRI study of normal participants, the neural mechanisms that underlie our experience of getting a joke that depends on the resolution of semantically ambiguous words were explored. Jokes that contained ambiguous words were compared with sentences that contained ambiguous words but were not funny, as well as to matched verbal jokes that did not depend on semantic ambiguity. The results confirm that both the left inferior temporal gyrus and left inferior frontal gyrus are involved in processing the semantic aspects of language comprehension, while a more widespread network that includes both of these regions and the temporoparietal junction bilaterally is involved in processing humorous verbal jokes when compared with matched nonhumorous material. In addition, hearing jokes was associated with increased activity in a network of subcortical regions, including the amygdala, the ventral striatum, and the midbrain, that have been implicated in experiencing positive reward. Moreover, activity in these regions correlated with the subjective ratings of funniness of the presented material. These results allow a more precise account of how the neural and cognitive processes that are involved in ambiguity resolution contribute to the appreciation of jokes that depend on semantic ambiguity.
Related JoVE Video
Decision-making in frontotemporal dementia: clinical, theoretical and legal implications.
Dement Geriatr Cogn Disord
PUBLISHED: 06-06-2011
Show Abstract
Hide Abstract
The behavioral variant of frontotemporal dementia (bvFTD) is characterized by progressive changes in personality and social interaction, loss of empathy, disinhibition and impulsivity, most of which generally precede the onset of cognitive deficits. In this study, we investigated decision-making cognition in a group of patients with an early bvFTD diagnosis whose standard neuropsychological performance was within normal range for all variables.
Related JoVE Video
Functional imaging reveals movement preparatory activity in the vegetative state.
Front Hum Neurosci
PUBLISHED: 01-08-2011
Show Abstract
Hide Abstract
The vegetative state (VS) is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect signs of purposeful behavior in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI) to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Our results may reflect residual voluntary processing in these two patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.
Related JoVE Video
Explaining seeing? Disentangling qualia from perceptual organization.
Cogn Neurosci
PUBLISHED: 09-01-2010
Show Abstract
Hide Abstract
Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.
Related JoVE Video
Probing the lifetimes of auditory novelty detection processes.
Neuropsychologia
PUBLISHED: 06-19-2010
Show Abstract
Hide Abstract
Auditory novelty detection can be fractionated into multiple cognitive processes associated with their respective neurophysiological signatures. In the present study we used high-density scalp event-related potentials (ERPs) during an active version of the auditory oddball paradigm to explore the lifetimes of these processes by varying the stimulus onset asynchrony (SOA). We observed that early MMN (90-160 ms) decreased when the SOA increased, confirming the evanescence of this echoic memory system. Subsequent neural events including late MMN (160-220 ms) and P3a/P3b components of the P3 complex (240-500 ms) did not decay with SOA, but showed a systematic delay effect supporting a two-stage model of accumulation of evidence. On the basis of these observations, we propose a distinction within the MMN complex of two distinct events: (1) an early, pre-attentive and fast-decaying MMN associated with generators located within superior temporal gyri (STG) and frontal cortex, and (2) a late MMN more resistant to SOA, corresponding to the activation of a distributed cortical network including fronto-parietal regions.
Related JoVE Video
Frontotemporal dementia presenting as pathological gambling.
Nat Rev Neurol
PUBLISHED: 05-04-2010
Show Abstract
Hide Abstract
A 69 year-old woman presented to an interdisciplinary medical group with pathological gambling, and went on to develop disinhibition, loss of empathy, and perseverative, stereotyped and ritualistic behavior. An initial neuropsychological evaluation showed selective impairment on the Iowa Gambling Task similar to that of patients with behavioral variant frontotemporal dementia, despite normal performance on standard neuropsychological tasks. MRI scans showed frontal lobe atrophy, which was consistent with findings on hexamethylpropyleneamine oxime single photon emission CT (HMPAO-SPECT).
Related JoVE Video
Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state.
Neuroimage
PUBLISHED: 04-02-2010
Show Abstract
Hide Abstract
The vegetative (VS) and minimally conscious (MCS) states are currently distinguished on the basis of exhibited behaviour rather than underlying pathology. Although previous histopathological studies have documented different degrees of diffuse axonal injury as well as damage to the thalami and brainstem regions in VS and MCS, these differences have not been assessed in vivo, and therefore, do not provide a measurable pathological marker to aid clinical diagnosis. Currently, the diagnostic decision-making process is highly subjective and prone to error. Indeed, previous work has suggested that up to 43% of patients in this group may be misdiagnosed. We used diffusion tensor imaging (DTI) to study the neuropathology of 25 vegetative and minimally conscious patients in vivo and to identify measures that could potentially distinguish the patients in these two groups. Mean diffusivity (MD) maps of the subcortical white matter, brainstem and thalami were generated. The MCS and VS patients differed significantly in subcortical white matter and thalamic regions, but appeared not to differ in the brainstem. Moreover, the DTI results predicted scores on the Coma Recovery Scale (p<0.001) and successfully classified the patients in to their appropriate diagnostic categories with an accuracy of 95%. The results suggest that this method may provide an objective and highly accurate method for classifying these challenging patient populations and may therefore complement the behavioural assessment to inform the diagnostic decision making process.
Related JoVE Video
You are only coming through in waves: wakefulness variability and assessment in patients with impaired consciousness.
Prog. Brain Res.
PUBLISHED: 10-13-2009
Show Abstract
Hide Abstract
The vegetative state (VS) is defined as a condition of wakefulness without awareness. Being awake and being asleep are two behavioral and physiological manifestations of the daily cycles of vigilance and metabolism. International guidelines for the diagnosis of VS propose that a patient fulfills criteria for wakefulness if he/she exhibits cycles of eye closure and eye opening giving the impression of a preserved sleep-wake cycle. We argue that these criteria are insufficient and we suggest guidelines to address wakefulness in a more comprehensive manner in this complex and heterogeneous group of patients. Four factors underlying wakefulness, as well as their interactions, are considered: arousal/responsiveness, circadian rhythms, sleep cycle, and homeostasis. The first refers to the arousability and capacity to, consciously or not, respond to external stimuli. The second deals with the circadian clock as a synchronizer of physiological functions to environmental cyclic changes. The third evaluates general sleep patterns, while homeostasis refers to the capacity of the body to regulate its internal state and maintain a stable condition. We present examples of reflex responses, activity rhythms, and electroencephalographic (EEG) measurements from patients with disorders of consciousness (DOC) to illustrate these factors of wakefulness. If properly assessed, they would help in the evaluation of consciousness by informing when and in which context the patient is likely to exhibit maximal responsiveness. This evaluation has the potential to improve diagnosis and treatment and may also add prognostic value to the multimodal assessment in DOC.
Related JoVE Video
Classical conditioning in the vegetative and minimally conscious state.
Nat. Neurosci.
PUBLISHED: 06-12-2009
Show Abstract
Hide Abstract
Pavlovian trace conditioning depends on the temporal gap between the conditioned and unconditioned stimuli. It requires, in mammals, functional medial temporal lobe structures and, in humans, explicit knowledge of the temporal contingency. It is therefore considered to be a plausible objective test to assess awareness without relying on explicit reports. We found that individuals with disorders of consciousness (DOCs), despite being unable to report awareness explicitly, were able to learn this procedure. Learning was specific and showed an anticipatory electromyographic response to the aversive conditioning stimulus, which was substantially stronger than to the control stimulus and was augmented as the aversive stimulus approached. The amount of learning correlated with the degree of cortical atrophy and was a good indicator of recovery. None of these effects were observed in control subjects under the effect of anesthesia (propofol). Our results suggest that individuals with DOCs might have partially preserved conscious processing, which cannot be mediated by explicit reports and is not detected by behavioral assessment.
Related JoVE Video
A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia.
Brain
PUBLISHED: 03-31-2009
Show Abstract
Hide Abstract
Traditional cognitive tests may not be sensitive for the early detection of executive and social cognitive impairments in the behavioural variant of frontotemporal dementia. The aim of this study was to detect specific executive and social cognitive deficits in patients with early behavioural variant frontotemporal dementia using a battery of tests previously shown to be sensitive to frontal lobe dysfunction. Behavioural variant frontotemporal dementia patients and paired controls were assessed with a complete standard neuropsychological battery evaluating attention, memory, visuospatial abilities, language and executive functions. All participants were then assessed with our Executive and Social Cognition Battery, which included Theory of Mind tests (Mind in the Eyes, Faux Pas), the Hotel Task, Multiple Errands Task-hospital version and the Iowa Gambling Task for complex decision-making. Patients were divided into two groups according to their Addenbrookes Cognitive Examination scores, a measure of general cognitive status. Low Addenbrookes Cognitive Examination patients differed from controls on most tasks of the standard battery and the Executive and Social Cognition Battery. While high Addenbrookes Cognitive Examination patients did not differ from controls on most traditional neuropsychological tests, significant differences were found between this high-functioning behavioural variant of frontotemporal dementia group and controls on most measures of our Executive and Social Cognition Battery. Our results suggest that the Executive and Social Cognition Battery used in this study is more sensitive in detecting executive and social cognitive impairment deficits in early behavioural variant of frontotemporal dementia than the classical cognitive measures.
Related JoVE Video
Neural signature of the conscious processing of auditory regularities.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool.
Related JoVE Video
Motor-language coupling: direct evidence from early Parkinsons disease and intracranial cortical recordings.
Cortex
Show Abstract
Hide Abstract
Language and action systems are functionally coupled in the brain as demonstrated by converging evidence using Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and lesion studies. In particular, this coupling has been demonstrated using the action-sentence compatibility effect (ACE) in which motor activity and language interact. The ACE task requires participants to listen to sentences that described actions typically performed with an open hand (e.g., clapping), a closed hand (e.g., hammering), or without any hand action (neutral); and to press a large button with either an open hand position or closed hand position immediately upon comprehending each sentence. The ACE is defined as a longer reaction time (RT) in the action-sentence incompatible conditions than in the compatible conditions. Here we investigated direct motor-language coupling in two novel and uniquely informative ways. First, we measured the behavioural ACE in patients with motor impairment (early Parkinsons disease - EPD), and second, in epileptic patients with direct electrocorticography (ECoG) recordings. In experiment 1, EPD participants with preserved general cognitive repertoire, showed a much diminished ACE relative to non-EPD volunteers. Moreover, a correlation between ACE performance and action-verb processing (kissing and dancing test - KDT) was observed. Direct cortical recordings (ECoG) in motor and language areas (experiment 2) demonstrated simultaneous bidirectional effects: motor preparation affected language processing (N400 at left inferior frontal gyrus and middle/superior temporal gyrus), and language processing affected activity in movement-related areas (motor potential at premotor and M1). Our findings show that the ACE paradigm requires ongoing integration of preserved motor and language coupling (abolished in EPD) and engages motor-temporal cortices in a bidirectional way. In addition, both experiments suggest the presence of a motor-language network which is not restricted to somatotopically defined brain areas. These results open new pathways in the fields of motor diseases, theoretical approaches to language understanding, and models of action-perception coupling.
Related JoVE Video
Arousal modulates auditory attention and awareness: insights from sleep, sedation, and disorders of consciousness.
Front Psychol
Show Abstract
Hide Abstract
The interplay between attention and consciousness is frequently tested in altered states of consciousness, including transitions between stages of sleep and sedation, and in pathological disorders of consciousness (DoC; the vegetative and minimally conscious states; VS and MCS). One of the most widely used tasks to assess cognitive processing in this context is the auditory oddball paradigm, where an infrequent change in a sequence of sounds elicits, in awake subjects, a characteristic EEG event-related potential called the mismatch negativity, followed by the classic P300 wave. The latter is further separable into the slightly earlier, anterior P3a and the later, posterior P3b, thought to be linked to task-irrelevant "bottom-up" and task-oriented "top-down" attention, respectively. We discuss here the putative dissociations between attention and awareness in DoC, sedation and sleep, bearing in mind the recently emerging evidence from healthy volunteers and patients. These findings highlight the neurophysiological and cognitive parallels (and differences) across these three distinct variations in levels of consciousness, and inform the theoretical framework for interpreting the role of attention therein.
Related JoVE Video
Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness.
Neuropsychologia
Show Abstract
Hide Abstract
Improving our ability to detect conscious processing in non communicating patients remains a major goal of clinical cognitive neurosciences. In this perspective, several functional brain imaging tools are currently under development. Bedside cognitive event-related potentials (ERPs) derived from the EEG signal are a good candidate to explore consciousness in these patients because: (1) they have an optimal time resolution within the millisecond range able to monitor the stream of consciousness, (2) they are fully non-invasive and relatively cheap, (3) they can be recorded continuously on dedicated individual systems to monitor consciousness and to communicate with patients, (4) and they can be used to enrich patients autonomy through brain-computer interfaces. We recently designed an original auditory rule extraction ERP test that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, while global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. In the present work, we report the results of this test in 65 successive recordings obtained at bedside from 49 non-communicating patients affected with various acute or chronic neurological disorders. At the individual level, we confirm the high specificity of the global effect: only conscious patients presented this proposed neural signature of conscious processing. Here, we also describe in details the respective neural responses elicited by violations of local and global auditory regularities, and we report two additional ERP effects related to stimuli expectancy and to task learning, and we discuss their relations to consciousness.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.