JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Transient receptor potential ankyrin 1 in spinal cord dorsal horn is involved in neuropathic pain in nerve root constriction rats.
Mol Pain
PUBLISHED: 09-06-2014
Show Abstract
Hide Abstract
Lumbar radicular pain is categorized as a type of neuropathic pain, but its pathophysiological mechanisms are not fully understood. The substantia gelatinosa (SG) in the spinal cord dorsal horn receives primary afferent inputs and is considered to be a therapeutic target for treating neuropathic pain. In vivo patch-clamp recording is a useful procedure for analyzing the functional properties of synaptic transmission in SG neurons. Transient receptor potential ankyrin 1 (TRPA1) has been widely identified in the central and peripheral nervous systems, such as in the peripheral nociceptor, dorsal root ganglion, and spinal cord dorsal horn and is involved in synaptic transmission of pain. However, its functional role and mechanism of pain transmission in the spinal cord dorsal horn are not well understood. The purpose of this study was to use in vivo patch-clamp analysis to examine changes in the excitatory synaptic transmission of SG neurons treated with TRPA1 antagonist and to clarify the potential role of TRPA1 in the rat spinal cord dorsal horn.
Related JoVE Video
SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system.
Mol Brain
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refolding. This genetic study is aimed to test whether mutant SOD1-mediated ALS pathology recapitulated in mice could be alleviated by overexpressing a longevity-related deacetylase SIRT1 whose substrates include a transcription factor heat shock factor 1 (HSF1), the master regulator of the chaperone system.
Related JoVE Video
Genomic responses in mouse models greatly mimic human inflammatory diseases.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
The use of mice as animal models has long been considered essential in modern biomedical research, but the role of mouse models in research was challenged by a recent report that genomic responses in mouse models poorly mimic human inflammatory diseases. Here we reevaluated the same gene expression datasets used in the previous study by focusing on genes whose expression levels were significantly changed in both humans and mice. Contrary to the previous findings, the gene expression levels in the mouse models showed extraordinarily significant correlations with those of the human conditions (Spearman's rank correlation coefficient: 0.43-0.68; genes changed in the same direction: 77-93%; P = 6.5 × 10(-11) to 1.2 × 10(-35)). Moreover, meta-analysis of those datasets revealed a number of pathways/biogroups commonly regulated by multiple conditions in humans and mice. These findings demonstrate that gene expression patterns in mouse models closely recapitulate those in human inflammatory conditions and strongly argue for the utility of mice as animal models of human disorders.
Related JoVE Video
[Immaturity of brain as an endophenotype of neuropsychiatric disorders].
Nihon Shinkei Seishin Yakurigaku Zasshi
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
Schizophrenia and bipolar disorder are severe neuropsychiatric disorders, affecting about 1% of the population. Identifying endophenotypes in the brains of neuropsychiatric patients is now considered the way to understand the underlying mechanisms and to improve therapeutic outcomes. However, the endophenotypes and brain mechanisms of the disorders remain unknown. We have previously reported that alpha-CaMKII heterozygous knockout mice show abnormal behaviors related to neuropsychiatric disorders. In these mutant mice, almost all neurons in the hippocampal dentate gyrus stay at a pseudo-immature state, which we refer to as "immature dentate gyrus (iDG)." So far, the iDG phenotype and similar behavioral abnormalities have been found in Schnurri-2 knockout, SNAP-25 mutant, and forebrain-specific calcineurin knockout mice. In addition, we found that both chronic fluoxetine treatment and pilocarpine-induced seizures can reverse the maturation state of the mature neurons, resulting in the iDG phenotype in wild-type mice. Such an iDG-like phenomenon was observed in the post-mortem brains from patients with schizophrenia/bipolar disorder. Recent studies suggest that cortex and amygdala of schizophrenia patients are also at a pseudo-immature state. Based on the findings, we proposed that immaturity of certain types of cells in the brain is a potential endophenotype of neuropsychiatric disorders.
Related JoVE Video
Mechanisms for interferon-?-induced depression and neural stem cell dysfunction.
Stem Cell Reports
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
New neurons generated by the neural stem cells (NSCs) in the adult hippocampus play an important role in emotional regulation and respond to the action of antidepressants. Depression is a common and serious side effect of interferon-? (IFN-?), which limits its use as an antiviral and antitumor drug. However, the mechanism(s) underlying IFN-induced depression are largely unknown. Using a comprehensive battery of behavioral tests, we found that mice subjected to IFN-? treatment exhibited a depression-like phenotype. IFN-? directly suppressed NSC proliferation, resulting in the reduced generation of new neurons. Brain-specific mouse knockout of the IFN-? receptor prevented IFN-?-induced depressive behavioral phenotypes and the inhibition of neurogenesis, suggesting that IFN-? suppresses hippocampal neurogenesis and induces depression via its receptor in the brain. These findings provide insight for understanding the neuropathology underlying IFN-?-induced depression and for developing new strategies for the prevention and treatment of IFN-?-induced depressive effects.
Related JoVE Video
Enhanced stability of hippocampal place representation caused by reduced magnesium block of NMDA receptors in the dentate gyrus.
Mol Brain
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Voltage-dependent block of the NMDA receptor by Mg2+ is thought to be central to the unique involvement of this receptor in higher brain functions. However, the in vivo role of the Mg2+ block in the mammalian brain has not yet been investigated, because brain-wide loss of the Mg2+ block causes perinatal lethality. In this study, we used a brain-region specific knock-in mouse expressing an NMDA receptor that is defective for the Mg2+ block in order to test its role in neural information processing.
Related JoVE Video
Transcriptomic evidence for immaturity of the prefrontal cortex in patients with schizophrenia.
Mol Brain
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Schizophrenia, a severe psychiatric disorder, has a lifetime prevalence of 1%. The exact mechanisms underlying this disorder remain unknown, though theories abound. Recent studies suggest that particular cell types and biological processes in the schizophrenic cortex have a pseudo-immature status in which the molecular properties partially resemble those in the normal immature brain. However, genome-wide gene expression patterns in the brains of patients with schizophrenia and those of normal infants have not been directly compared. Here, we show that the gene expression patterns in the schizophrenic prefrontal cortex (PFC) resemble those in the juvenile PFC.
Related JoVE Video
Hippocampal neurogenesis regulates forgetting during adulthood and infancy.
Science
PUBLISHED: 05-10-2014
Show Abstract
Hide Abstract
Throughout life, new neurons are continuously added to the dentate gyrus. As this continuous addition remodels hippocampal circuits, computational models predict that neurogenesis leads to degradation or forgetting of established memories. Consistent with this, increasing neurogenesis after the formation of a memory was sufficient to induce forgetting in adult mice. By contrast, during infancy, when hippocampal neurogenesis levels are high and freshly generated memories tend to be rapidly forgotten (infantile amnesia), decreasing neurogenesis after memory formation mitigated forgetting. In precocial species, including guinea pigs and degus, most granule cells are generated prenatally. Consistent with reduced levels of postnatal hippocampal neurogenesis, infant guinea pigs and degus did not exhibit forgetting. However, increasing neurogenesis after memory formation induced infantile amnesia in these species.
Related JoVE Video
IL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours.
Sci Rep
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
IL-1 receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic intellectual disability and is associated with autism. IL1RAPL1 mediates excitatory synapse formation through trans-synaptic interaction with PTP?. Here, we showed that the spine density of cortical neurons was significantly reduced in IL1RAPL1 knockout mice. The spatial reference and working memories and remote fear memory were mildly impaired in IL1RAPL1 knockout mice. Furthermore, the behavioural flexibility was slightly reduced in the T-maze test. Interestingly, the performance of IL1RAPL1 knockout mice in the rotarod test was significantly better than that of wild-type mice. Moreover, IL1RAPL1 knockout mice consistently exhibited high locomotor activity in all the tasks examined. In addition, open-space and height anxiety-like behaviours were decreased in IL1RAPL1 knockout mice. These results suggest that IL1RAPL1 ablation resulted in spine density decrease and affected not only learning but also behavioural flexibility, locomotor activity and anxiety.
Related JoVE Video
Contextual and cued fear conditioning test using a video analyzing system in mice.
J Vis Exp
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at http://www.mouse-phenotype.org/. Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Related JoVE Video
Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders.
Mol Brain
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system.
Related JoVE Video
Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes.
Mol Brain
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved.
Related JoVE Video
Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia.
Mol Brain
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Loss of adenomatous polyposis coli (APC) gene function results in constitutive activation of the canonical Wnt pathway and represents the main initiating and rate-limiting event in colorectal tumorigenesis. APC is likely to participate in a wide spectrum of biological functions via its different functional domains and is abundantly expressed in the brain as well as in peripheral tissues. However, the neuronal function of APC is poorly understood. To investigate the functional role of Apc in the central nervous system, we analyzed the neurological phenotypes of Apc1638T/1638T mice, which carry a targeted deletion of the 3' terminal third of Apc that does not affect Wnt signaling.
Related JoVE Video
Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein ? (SIRP?), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRP? fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRP?. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.
Related JoVE Video
Increased behavioral and neuronal responses to a hallucinogenic drug in PACAP heterozygous mutant mice.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP(+/-)) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP(+/-) mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP(+/-) mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP(+/-) mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP(+/-) and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP(+/-) mice compared with wild-type mice. These results indicate that PACAP(+/-) mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.
Related JoVE Video
Point Mutation in Syntaxin-1A Causes Abnormal Vesicle Recycling, Behaviors, and Short Term Plasticity.
J. Biol. Chem.
PUBLISHED: 10-17-2013
Show Abstract
Hide Abstract
Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.
Related JoVE Video
Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.
J. Neurosci.
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.
Related JoVE Video
Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice.
Mol Brain
PUBLISHED: 09-04-2013
Show Abstract
Hide Abstract
The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders, but cellular mechanisms underlying the antidepressant effect of FLX remain largely unknown. The generally accepted effect of chronic FLX treatment is increased adult neurogenesis in the hippocampal dentate gyrus. It was recently demonstrated that FLX treatments can reverse the established neuronal maturation of granule cells in the hippocampal dentate gyrus and of gamma-aminobutyric acidergic (GABAergic) interneurons in the basolateral amygdala. However, it is not clear whether this dematuration effect of FLX occurs in other brain regions. Thus, in this study, we used immunohistological analysis to assess the effect of FLX treatment on GABAergic interneurons in the medial frontal cortex (mFC) and reticular thalamic nucleus (RTN).
Related JoVE Video
Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinsons disease, causes behavioral alterations but not neurodegeneration in mice.
Mol Brain
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins; SEPT4/CDCrel-2 which coaggregates with ?-synuclein as Lewy bodies in Parkinsons disease, and its closest homolog SEPT5/CDCrel-1/PNUTL1 whose overload with viral vector can rapidly eliminate dopamine neurons in rats. However, chronic effects of pan-neural overload of septins have never been examined in mammals. To address this, we established a line of transgenic mice that express the largest gene product SEPT4(54kDa) via the prion promoter in the entire brain.
Related JoVE Video
ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response.
BMC Res Notes
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1(Rgsc174)/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1(Rgsc174)/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1(Rgsc174)/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests.
Related JoVE Video
Immature dentate gyrus: an endophenotype of neuropsychiatric disorders.
Neural Plast.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in ? -CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as "immature dentate gyrus (iDG)." To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity) have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the datas potential implication in elucidating the pathophysiology of neuropsychiatric disorders.
Related JoVE Video
Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia.
Neuropsychopharmacology
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Schnurri-2 (Shn-2), an nuclear factor-?B site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.
Related JoVE Video
Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice.
Mol Brain
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown.
Related JoVE Video
Post-natal treatment by a blood-brain-barrier permeable calpain inhibitor, SNJ1945 rescued defective function in lissencephaly.
Sci Rep
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Toward a therapeutic intervention of lissencephaly, we applied a novel calpain inhibitor, SNJ1945. Peri-natal or post-natal treatment with SNJ1945 rescued defective neuronal migration in Lis1?/? mice, impaired behavioral performance and improvement of ¹?F-FDG uptake. Furthermore, SNJ1945 improved the neural circuit formation and retrograde transport of NFG in Lis1?/? mice. Thus, SNJ1945 is a potential drug for the treatment of human lissencephaly patients.
Related JoVE Video
The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease.
Bipolar Disord
PUBLISHED: 01-13-2013
Show Abstract
Hide Abstract
OBJECTIVES: There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. METHODS: Behaviors of calcium/calmodulin-dependent protein kinase II alpha (?-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. RESULTS: The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal ?-CaMKII protein levels was also found in both models. CONCLUSIONS: Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy and bipolar disorder/schizophrenia are strikingly similar.
Related JoVE Video
Fluoxetine-induced cortical adult neurogenesis.
Neuropsychopharmacology
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Adult neurogenesis in the hippocampal subgranular zone (SGZ) and the anterior subventricular zone (SVZ) is regulated by multiple factors, including neurotransmitters, hormones, stress, aging, voluntary exercise, environmental enrichment, learning, and ischemia. Chronic treatment with selective serotonin reuptake inhibitors (SSRIs) modulates adult neurogenesis in the SGZ, the neuronal area that is hypothesized to mediate the antidepressant effects of these substances. Layer 1 inhibitory neuron progenitor cells (L1-INP cells) were recently identified in the adult cortex, but it remains unclear what factors other than ischemia affect the neurogenesis of L1-INP cells. Here, we show that chronic treatment with an SSRI, fluoxetine (FLX), stimulated the neurogenesis of ?-aminobutyric acid (GABA)ergic interneurons from L1-INP cells in the cortex of adult mice. Immunofluorescence and genetic analyses revealed that FLX treatment increased the number of L1-INP cells in all examined cortical regions in a dose-dependent manner. Furthermore, enhanced Venus reporter expression driven by the synapsin I promoter demonstrated that GABAergic interneurons were derived from retrovirally labeled L1-INP cells. In order to assess if these new GABAergic interneurons possess physiological function, we examined their effect on apoptosis surrounding areas following ischemia. Intriguingly, the number of neurons expressing the apoptotic marker, active caspase-3, was significantly lower in adult mice pretreated with FLX. Our findings indicate that FLX stimulates the neurogenesis of cortical GABAergic interneurons, which might have, at least, some functions, including a suppressive effect on apoptosis induced by ischemia.
Related JoVE Video
PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.
Related JoVE Video
In vivo evaluation of cellular activity in ?CaMKII heterozygous knockout mice using manganese-enhanced magnetic resonance imaging (MEMRI).
Front Integr Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The alpha-calcium/calmodulin-dependent protein kinase II (?CaMKII) is a serine/threonine protein kinase predominantly expressed in the forebrain, especially in the postsynaptic density, and plays a key role in synaptic plasticity, learning and memory. ?CaMKII heterozygous knockout (HKO) mice exhibit abnormal emotional and aggressive behaviors and cognitive impairments and have been proposed as an animal model of psychiatric illness. Our previous studies have shown that the expression of immediate early genes (IEGs) after exposure to electric foot shock or after performing a working memory task is decreased in the hippocampus, central amygdala, and medial prefrontal cortex of mutant mice. These changes could be caused by disturbances in neuronal signal transduction; however, it is still unclear whether neuronal activity is reduced in these regions. In this study, we performed in vivo manganese-enhanced magnetic resonance imaging (MEMRI) to assess the regional cellular activity in the brains of ?CaMKII HKO mice. The signal intensity of MEMRI 24 h after systemic MnCl2 administration reflects functional increases of Mn(2+) influx into neurons and glia via transport mechanisms, such as voltage-gated and/or ligand-gated Ca(2+) channels. ?CaMKII HKO mice demonstrated a low signal intensity of MEMRI in the dentate gyrus (DG), in which almost all neurons were at immature status at the molecular, morphological, and electrophysiological levels. In contrast, analysis of the signal intensity in these mutant mice revealed increased activity in the CA1 area of the hippocampus, a region crucial for cognitive function. The signal intensity was also increased in the bed nucleus of the stria terminalis (BNST), which is involved in anxiety. These changes in the mutant mice may be responsible for the observed dysregulated behaviors, such as cognitive deficit and abnormal anxiety-like behavior, which are similar to symptoms seen in human psychiatric disorders.
Related JoVE Video
Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits.
Front Behav Neurosci
PUBLISHED: 09-26-2011
Show Abstract
Hide Abstract
A tumor suppressor gene, Adenomatous polyposis coli (Apc), is expressed in the nervous system from embryonic to adulthood stages, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4) and calcineurin (CN), are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc(+/-)) mice. Apc(+/-) mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc(+/-) mice exhibited hypoactivity. In the eight-arm radial maze, Apc(+/-) mice 6-7 weeks of age displayed almost normal performance, whereas those 11-12 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc(+/-) mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance.
Related JoVE Video
DIP/WISH deficiency enhances synaptic function and performance in the Barnes maze.
Mol Brain
PUBLISHED: 06-15-2011
Show Abstract
Hide Abstract
DIP (diaphanous interacting protein)/WISH (WASP interacting SH3 protein) is a protein involved in cytoskeletal signaling which regulates actin cytoskeleton dynamics and/or microtubules mainly through the activity of Rho-related proteins. Although it is well established that: 1) spine-head volumes change dynamically and reflect the strength of the synapse accompanying long-term functional plasticity of glutamatergic synaptic transmission and 2) actin organization is critically involved in spine formation, the involvement of DIP/WISH in these processes is unknown.
Related JoVE Video
Expression of the AMPA Receptor Subunits GluR1 and GluR2 is Associated with Granule Cell Maturation in the Dentate Gyrus.
Front Neurosci
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The dentate gyrus produces new granule neurons throughout adulthood in mammals from rodents to humans. During granule cell maturation, defined markers are expressed in a highly regulated sequential process, which is necessary for directed neuronal differentiation. In the present study, we show that ?-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor subunits GluR1 and GluR2 are expressed in differentiated granule cells, but not in stem cells, in neonatal, and adult dentate gyrus. Using markers for neural progenitors, immature and mature granule cells, we found that GluR1 and GluR2 were expressed mainly in mature cells and in some immature cells. A time-course analysis of 5-bromo-2-deoxyuridine staining revealed that granule cells express GluR1 around 3?weeks after being generated. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, a putative animal model of schizophrenia and bipolar disorder in which dentate gyrus granule cells fail to mature normally, GluR1 and GluR2 immunoreactivities were substantially downregulated in the dentate gyrus granule cells. In the granule cells of mutant mice, the expression of both presynaptic and postsynaptic markers was decreased, suggesting that GluR1 and GluR2 are also associated with synaptic maturation. Moreover, GluR1 and GluR2 were also expressed in mature granule cells of the neonatal dentate gyrus. Taken together, these findings indicate that GluR1 and GluR2 expression closely correlates with the neuronal maturation state, and that GluR1 and GluR2 are useful markers for mature granule cells in the dentate gyrus.
Related JoVE Video
Relaxin-3-deficient mice showed slight alteration in anxiety-related behavior.
Front Behav Neurosci
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Relaxin-3 is a neuropeptide belonging to the relaxin/insulin superfamily. Studies using rodents have revealed that relaxin-3 is predominantly expressed in neurons in the nucleus incertus (NI) of the pons, the axons of which project to forebrain regions including the hypothalamus. There is evidence that relaxin-3 is involved in several functions, including food intake and stress responses. In the present study, we generated relaxin-3 gene knockout (KO) mice and examined them using a range of behavioral tests of sensory/motor functions and emotion-related behaviors. The results revealed that relaxin-3 KO mice exhibited normal growth and appearance, and were generally indistinguishable from wild genotype littermates. There was no difference in bodyweight among genotypes until at least 28?weeks after birth. In addition, there were no significant differences between wild-type and KO mice in locomotor activity, social interaction, hot plate test performance, fear conditioning, depression-like behavior, and Y-maze test performance. However, in the elevated plus maze test, KO mice exhibited a robust increase in the tendency to enter open arms, although they exhibited normal performance in a light/dark transition test and showed no difference from wild-type mice in the time spent in central area in the open field test. On the other hand, a significant increase in the acoustic startle response was observed in KO mice. These results indicate that relaxin-3 is slightly involved in the anxiety-related behavior.
Related JoVE Video
Forebrain-specific constitutively active CaMKK? transgenic mice show deficits in hippocampus-dependent long-term memory.
Neurobiol Learn Mem
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
The Ca(2+)/calmodulin (CaM) kinase cascade is activated by Ca(2+) influx through the voltage-dependent Ca(2+) channels and the NMDA receptor. CaM kinase kinase (CaMKK), the most upstream kinase of the CaM kinase cascade, phosphorylates and activates both CaM kinase I (CaMKI) and CaMKIV, resulting in activation of cyclic AMP-responsive element binding protein (CREB)-dependent gene transcription. Using transgenic techniques, we created mutant mice in which a constitutively active form of CaMKK1, the autoinhibitory domain truncated protein, is over-expressed specifically in the forebrain. In these mice, although performance was normal in basal activity and short-term memory, specific impairments were shown in hippocampus-dependent long-term memory after training in spatial memory tasks and after contextual fear conditioning. In cultured neurons of these mice, phosphorylation of CaMKI was significantly increased in basal states, whereas the activity range of CaMKI phosphorylation by brain-derived neurotrophic factor (BDNF) and KCl stimulation was significantly diminished in mutant mice. Our results define a critical role for CaMKK? in synaptic plasticity and the retention of hippocampus-dependent long-term memory.
Related JoVE Video
P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating.
PLoS ONE
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Tauopathies are neurodegenerative disorders characterized by the accumulation of abnormal tau protein leading to cognitive and/or motor dysfunction. To understand the relationship between tau pathology and behavioral impairments, we comprehensively assessed behavioral abnormalities in a mouse tauopathy model expressing the human P301S mutant tau protein in the early stage of disease to detect its initial neurological manifestations. Behavioral abnormalities, shown by open field test, elevated plus-maze test, hot plate test, Y-maze test, Barnes maze test, Morris water maze test, and/or contextual fear conditioning test, recapitulated the neurological deficits of human tauopathies with dementia. Furthermore, we discovered that prepulse inhibition (PPI), a marker of sensorimotor gating, was enhanced in these animals concomitantly with initial neuropathological changes in associated brain regions. This finding provides evidence that our tauopathy mouse model displays neurofunctional abnormalities in prodromal stages of disease, since enhancement of PPI is characteristic of amnestic mild cognitive impairment, a transitional stage between normal aging and dementia such as Alzheimers disease (AD), in contrast with attenuated PPI in AD patients. Therefore, assessment of sensorimotor gating could be used to detect the earliest manifestations of tauopathies exemplified by prodromal AD, in which abnormal tau protein may play critical roles in the onset of neuronal dysfunctions.
Related JoVE Video
Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice.
PLoS ONE
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
SCRAPPER, an F-box protein coded by FBXL20, is a subunit of SCF type E3 ubiquitin ligase. SCRAPPER localizes synapses and directly binds to Rab3-interacting molecule 1 (RIM1), an essential factor for synaptic vesicle release, thus it regulates neural transmission via RIM1 degradation. A defect in SCRAPPER leads to neurotransmission abnormalities, which could subsequently result in neurodegenerative phenotypes. Because it is likely that the alteration of neural transmission in Scrapper mutant mice affect their systemic condition, we have analyzed the behavioral phenotypes of mice with decreased or increased the amount of SCRAPPER. We carried out a series of behavioral test batteries for Scrapper mutant mice. Scrapper transgenic mice overexpressing SCRAPPER in the hippocampus did not show any significant difference in every test argued in this manuscript by comparison with wild-type mice. On the other hand, heterozygotes of Scrapper knockout [SCR (+/-)] mice showed significant difference in the contextual but not cued fear conditioning test. In addition, SCR (+/-) mice altered in some tests reflecting anxiety, which implies the loss of functions of SCRAPPER in the hippocampus. The behavioral phenotypes of Scrapper mutant mice suggest that molecular degradation conferred by SCRAPPER play important roles in hippocampal-dependent fear memory formation.
Related JoVE Video
Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice.
Mol Brain
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Recent studies indicate that chronic treatment with serotonergic antidepressants upregulates adult neurogenesis of the dentate gyrus (DG). In contrast, some studies claimed that there was very little alteration of neurogenesis in the subventricular zone (SVZ) by the antidepressants. Since almost all of those studies treated animals with drugs for 2 to 4 weeks as chronic treatment models of antidepressants, it is possible that antidepressant treatments for longer periods would affect adult neurogenesis in the SVZ.
Related JoVE Video
The influence of chronic cerebral hypoperfusion on cognitive function and amyloid ? metabolism in APP overexpressing mice.
PLoS ONE
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
Cognitive impairment resulting from cerebrovascular insufficiency has been termed vascular cognitive impairment, and is generally accepted to be distinct from Alzheimers disease resulting from a neurodegenerative process. However, it is clear that this simple dichotomy may need revision in light of the apparent occurrence of several shared features between Alzheimers disease and vascular cognitive impairment. Nevertheless, it still remains largely unknown whether the burden of vascular- and Alzheimer-type neuropathology are independent or interdependent. Therefore, we investigated whether chronic cerebral hypoperfusion influences cognitive ability or amyloid ? deposition in amyloid precursor protein (APP) overexpressing transgenic mice.
Related JoVE Video
Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling.
PLoS ONE
PUBLISHED: 09-08-2010
Show Abstract
Hide Abstract
Autism spectrum disorders (ASDs) have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs) are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+) mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.
Related JoVE Video
Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus.
Mol Brain
PUBLISHED: 08-26-2010
Show Abstract
Hide Abstract
New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO), whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.
Related JoVE Video
Right-hemispheric dominance of spatial memory in split-brain mice.
Hippocampus
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
Left-right asymmetry of human brain function has been known for a century, although much of molecular and cellular basis of brain laterality remains to be elusive. Recent studies suggest that hippocampal CA3-CA1 excitatory synapses are asymmetrically arranged, however, the functional implication of the asymmetrical circuitry has not been studied at the behavioral level. In order to address the left-right asymmetry of hippocampal function in behaving mice, we analyzed the performance of "split-brain" mice in the Barnes maze. The "split-brain" mice received ventral hippocampal commissure and corpus callosum transection in addition to deprivation of visual input from one eye. In such mice, the hippocampus in the side of visual deprivation receives sensory-driven input. Better spatial task performance was achieved by the mice which were forced to use the right hippocampus than those which were forced to use the left hippocampus. In two-choice spatial maze, forced usage of left hippocampus resulted in a comparable performance to the right counterpart, suggesting that both hippocampal hemispheres are capable of conducting spatial learning. Therefore, the results obtained from the Barnes maze suggest that the usage of the right hippocampus improves the accuracy of spatial memory. Performance of non-spatial yet hippocampus-dependent tasks (e.g. fear conditioning) was not influenced by the laterality of the hippocampus.
Related JoVE Video
Stress-evoked tyrosine phosphorylation of signal regulatory protein ? regulates behavioral immobility in the forced swim test.
J. Neurosci.
PUBLISHED: 08-06-2010
Show Abstract
Hide Abstract
Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPalpha that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPalpha in the brain of wild-type mice through activation of Src family kinases. The SIRPalpha ligand CD47 was important for such SIRPalpha phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvbeta2 was regulated by SIRPalpha. Thus, tyrosine phosphorylation of SIRPalpha is important for regulation of depression-like behavior in the response of the brain to stress.
Related JoVE Video
[Immature dentate gyrus as a candidate endophenotype of psychiatric disorders].
Nihon Shinkei Seishin Yakurigaku Zasshi
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
Despite massive research efforts, the exact pathogenesis and pathophysiology of psychiatric disorders, such as schizophrenia and bipolar disorder, remain largely unknown. Animal models can serve as essential tools for investigating the etiology and treatment of such disorders. Some mutant mouse strains were found to exhibit behavioral abnormalities reminiscent of human psychiatric disorders. Here we outline our unique approach of extrapolating findings in mice to humans, and present studies on alpha-CaMKII heterozygous knockout (alpha-CaMKII HKO) mice as examples. Alpha-CaMKII HKO mice have profoundly dysregulated behavior and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. By conducting a series of experiments, we discovered that almost all the neurons in the mutant DG were very similar to the immature DG neurons of normal rodents. In other words, alpha-CaMKII HKO mice have an "immature DG". We proposed that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders.
Related JoVE Video
Inactivation of fibroblast growth factor binding protein 3 causes anxiety-related behaviors.
Mol. Cell. Neurosci.
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
The neurobiological mechanisms of emotional modulation and the molecular pathophysiology of anxiety disorders are largely unknown. The fibroblast growth factor (FGF) family has been implicated in the regulation of many physiological and pathological processes, which include the control of emotional behaviors. The present study examined mice with a targeted deletion of the fgf-bp3 gene, which encodes a novel FGF-binding protein, in animal models relevant to anxiety. To define the behavioral consequences of FGF-BP3 deficiency, we evaluated fgf-bp3-deficient mice using anxiety-related behavioral paradigms that provide a conflict between the desire to explore an unknown area or objects and the aversion to a brightly lit open space. The fgf-bp3-deficient mice exhibited alterations in time spent in the central area of the open-field arena, were less active in the lit areas of a light/dark transition test, and had a prolonged latency to feed during a novelty-induced hypophagia test. These changes were associated with alterations in light-induced orbitofrontal cortex (OFC) activation in an extracellular signal-regulated kinase (ERK) pathway-dependent manner. These results demonstrate that FGF-BP3 is a potent mediator of anxiety-related behaviors in mice and suggest that distinct pathways regulate emotional behaviors. Therefore, FGF-BP3 plays a critical role in the regulation of emotional states and in the development of anxiety disorders and should be investigated as a therapeutic target for anxiety disease in humans.
Related JoVE Video
A mouse model characterizing features of vascular dementia with hippocampal atrophy.
Stroke
PUBLISHED: 05-06-2010
Show Abstract
Hide Abstract
We have previously described effects of chronic cerebral hypoperfusion in mice with bilateral common carotid artery stenosis (BCAS) using microcoils for 30 days. These mice specifically exhibit working memory deficits attributable to frontal-subcortical circuit damage without apparent gray matter changes, indicating similarities with subcortical ischemic vascular dementia. However, as subcortical ischemic vascular dementia progresses over time, the longer-term effects that characterize the mouse model are not known.
Related JoVE Video
Reversal of hippocampal neuronal maturation by serotonergic antidepressants.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-19-2010
Show Abstract
Hide Abstract
Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT(4) receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT(4) receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT(4) receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development.
Related JoVE Video
Behavioral profiles of three C57BL/6 substrains.
Front Behav Neurosci
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
C57BL/6 inbred strains of mice are widely used in knockout and transgenic research. To evaluate the loss-of-function and gain-of-function effects of the gene of interest, animal behaviors are often examined. However, an issue of C57BL/6 substrains that is not always appreciated is that behaviors are known to be strongly influenced by genetic background. To investigate the behavioral characteristics of C57BL/6 substrains, we subjected C57BL/6J, C57BL/6N, and C57BL/6C mice to a behavior test battery. We performed both a regular scale analysis, in which experimental conditions were tightly controlled, and large-scale analysis from large number of behavioral data that we have collected so far through the comprehensive behavioral test battery applied to 700-2,200 mice in total. Significant differences among the substrains were found in the results of various behavioral tests, including the open field, rotarod, elevated plus maze, prepulse inhibition, Porsolt forced swim, and spatial working memory version of the eight-arm radial maze. Our results show a divergence of behavioral performance in C57BL/6 substrains, which suggest that small genetic differences may have a great influence on behavioral phenotypes. Thus, the genetic background of different substrains should be carefully chosen, equated, and considered in the interpretation of mutant behavioral phenotypes.
Related JoVE Video
SDOP-DB: a comparative standardized-protocol database for mouse phenotypic analyses.
Bioinformatics
PUBLISHED: 03-01-2010
Show Abstract
Hide Abstract
This article reports the development of SDOP-DB, which can provide definite, detailed and easy comparison of experimental protocols used in mouse phenotypic analyses among institutes or laboratories. Because SDOP-DB is fully compliant with international standards, it can act as a practical foundation for international sharing and integration of mouse phenotypic information.
Related JoVE Video
Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice.
PLoS ONE
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB, the cyclic AMP-response element binding protein. CREB is a key transcription factor in synaptic plasticity and memory consolidation. To elucidate the behavioral effects of CaMKIV deficiency, we subjected CaMKIV knockout (CaMKIV KO) mice to a battery of behavioral tests. CaMKIV KO had no significant effects on locomotor activity, motor coordination, social interaction, pain sensitivity, prepulse inhibition, attention, or depression-like behavior. Consistent with previous reports, CaMKIV KO mice exhibited impaired retention in a fear conditioning test 28 days after training. In contrast, however, CaMKIV KO mice did not show any testing performance deficits in passive avoidance, one of the most commonly used fear memory paradigms, 28 days after training, suggesting that remote fear memory is intact. CaMKIV KO mice exhibited intact spatial reference memory learning in the Barnes circular maze, and normal spatial working memory in an eight-arm radial maze. CaMKIV KO mice also showed mildly decreased anxiety-like behavior, suggesting that CaMKIV is involved in regulating emotional behavior. These findings indicate that CaMKIV might not be essential for fear memory or spatial memory, although it is possible that the activities of other neural mechanisms or signaling pathways compensate for the CaMKIV deficiency.
Related JoVE Video
Case reports: Painful limbs/moving extremities: report of two cases.
Clin. Orthop. Relat. Res.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Painful limbs/moving extremities is a relatively rare condition characterized by aching pain in one limb and involuntary movement in the affected fingers or toes. Its pathomechanism is unknown. We report two patients with painful limbs/moving extremities. In one patient with a painful arm and moving fingers, the symptoms were resolved after surgery.
Related JoVE Video
Dissection of hippocampal dentate gyrus from adult mouse.
J Vis Exp
PUBLISHED: 11-19-2009
Show Abstract
Hide Abstract
The hippocampus is one of the most widely studied areas in the brain because of its important functional role in memory processing and learning, its remarkable neuronal cell plasticity, and its involvement in epilepsy, neurodegenerative diseases, and psychiatric disorders. The hippocampus is composed of distinct regions; the dentate gyrus, which comprises mainly granule neurons, and Ammons horn, which comprises mainly pyramidal neurons, and the two regions are connected by both anatomic and functional circuits. Many different mRNAs and proteins are selectively expressed in the dentate gyrus, and the dentate gyrus is a site of adult neurogenesis; that is, new neurons are continually generated in the adult dentate gyrus. To investigate mRNA and protein expression specific to the dentate gyrus, laser capture microdissection is often used. This method has some limitations, however, such as the need for special apparatuses and complicated handling procedures. In this video-recorded protocol, we demonstrate a dissection technique for removing the dentate gyrus from adult mouse under a stereomicroscope. Dentate gyrus samples prepared using this technique are suitable for any assay, including transcriptomic, proteomic, and cell biology analyses. We confirmed that the dissected tissue is dentate gyrus by conducting real-time PCR of dentate gyrus-specific genes, tryptophan 2,3-dioxygenase (TDO2) and desmoplakin (Dsp), and Ammons horn enriched genes, Meis-related gene 1b (Mrg1b) and TYRO3 protein tyrosine kinase 3 (Tyro3). The mRNA expressions of TDO2 and Dsp in the dentate gyrus samples were detected at obviously higher levels, whereas Mrg1b and Tyro3 were lower levels, than those in the Ammons horn samples. To demonstrate the advantage of this method, we performed DNA microarray analysis using samples of whole hippocampus and dentate gyrus. The mRNA expression of TDO2 and Dsp, which are expressed selectively in the dentate gyrus, in the whole hippocampus of alpha-CaMKII+/- mice, exhibited 0.037 and 0.10-fold changes compared to that of wild-type mice, respectively. In the isolated dentate gyrus, however, these expressions exhibited 0.011 and 0.021-fold changes compared to that of wild-type mice, demonstrating that gene expression changes in dentate gyrus can be detected with greater sensitivity. Taken together, this convenient and accurate dissection technique can be reliably used for studies focused on the dentate gyrus.
Related JoVE Video
Abnormalities in brain structure and behavior in GSK-3alpha mutant mice.
Mol Brain
PUBLISHED: 09-11-2009
Show Abstract
Hide Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3alpha and GSK-3beta. Mice lacking a functional GSK-3alpha gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3alpha KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis.
Related JoVE Video
Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells.
Nat. Neurosci.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
Adult mammalian neurogenesis occurs in the hippocampus and the olfactory bulb, whereas neocortical adult neurogenesis remains controversial. Several occurrences of neocortical adult neurogenesis in injured neocortex were recently reported, suggesting that neural stem cells (NSCs) or neuronal progenitor cells (NPCs) that can be activated by injury are maintained in the adult brain. However, it is not clear whether or where neocortical NSCs/NPCs exist in the brain. We found NPCs in the neocortical layer 1 of adult rats and observed that their proliferation was highly activated by global forebrain ischemia. Using retrovirus-mediated labeling of layer 1 proliferating cells with membrane-targeted green fluorescent protein, we found that the newly generated neurons were GABAergic and that the neurons were functionally integrated into the neuronal circuitry. Our results suggest that layer 1 NPCs are a source of adult neurogenesis under ischemic conditions.
Related JoVE Video
Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system.
Nat. Neurosci.
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
Axonal maturation and myelination are essential processes for establishing an efficient neuronal signaling network. We found that nardilysin (N-arginine dibasic convertase, also known as Nrd1 and NRDc), a metalloendopeptidase enhancer of protein ectodomain shedding, is a critical regulator of these processes. Nrd1-/- mice had smaller brains and a thin cerebral cortex, in which there were less myelinated fibers with thinner myelin sheaths and smaller axon diameters. We also found hypomyelination in the peripheral nervous system (PNS) of Nrd1-/- mice. Neuron-specific overexpression of NRDc induced hypermyelination, indicating that the level of neuronal NRDc regulates myelin thickness. Consistent with these findings, Nrd1-/- mice had impaired motor activities and cognitive deficits. Furthermore, NRDc enhanced ectodomain shedding of neuregulin1 (NRG1), which is a master regulator of myelination in the PNS. On the basis of these data, we propose that NRDc regulates axonal maturation and myelination in the CNS and PNS, in part, through the modulation of NRG1 shedding.
Related JoVE Video
Intrauterine environment-genome interaction and childrens development (4): Brain-behavior phenotypying of genetically-engineered mice using a comprehensive behavioral test battery on research of neuropsychiatric disorders.
J Toxicol Sci
PUBLISHED: 07-03-2009
Show Abstract
Hide Abstract
Despite massive research efforts, the exact pathogenesis and pathophysiology of psychiatric disorders, such as schizophrenia and bipolar disorder, remain largely unknown. Animal models can serve as essential tools for investigating the etiology and treatment of such disorders. Some mutant mouse strains were found to exhibit behavioral abnormalities reminiscent of human psychiatric disorders. Here we outline our unique approach of extrapolating findings in mice to humans, and present studies on alpha-CaMKII heterozygous knockout (alpha-CaMKII+/-) mice as examples. Alpha-CaMKII+/- mice have profoundly dysregulated behavior and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. By conducting a series of experiments, we discovered that almost all the neurons in the mutant DG were very similar to the immature DG neurons of normal rodents. In other words, alpha-CaMKII+/- mice have an "immature DG". We proposed that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders. The impact of a large-scale mouse phenotyping on studies of psychiatric disorders and the potential utility of an "animal-model-array" of psychiatric disorders for the development of suitable therapeutic agents is also discussed.
Related JoVE Video
Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities.
J. Neurosci.
PUBLISHED: 07-03-2009
Show Abstract
Hide Abstract
Conduction velocity (CV) of myelinated axons has been shown to be regulated by oligodendrocytes even after myelination has been completed. However, how myelinating oligodendrocytes regulate CV, and what the significance of this regulation is for normal brain function remain unknown. To address these questions, we analyzed a transgenic mouse line harboring extra copies of the myelin proteolipid protein 1 (plp1) gene (plp1(tg/-) mice) at 2 months of age. At this stage, the plp1(tg/-) mice have an unaffected myelin structure with a normally appearing ion channel distribution, but the CV in all axonal tracts tested in the CNS is greatly reduced. We also found decreased axonal diameters and slightly abnormal paranodal structures, both of which can be a cause for the reduced CV. Interestingly the plp1(tg/-) mice showed altered anxiety-like behaviors, reduced prepulse inhibitions, spatial learning deficits and working memory deficit, all of which are schizophrenia-related behaviors. Our results implicate that abnormalities in the neuron-glia interactions at the paranodal junctions can result in reduced CV in the CNS, which then induces behavioral abnormalities related to schizophrenia.
Related JoVE Video
Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice.
Front Behav Neurosci
PUBLISHED: 05-11-2009
Show Abstract
Hide Abstract
The alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII) is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of alpha-CaMKII (alpha-CaMKII+/-) have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG) of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs), c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC). However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of alpha-CaMKII in the proper maturation and integration of DG neurons into these circuits.
Related JoVE Video
Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice.
Mol Brain
PUBLISHED: 04-18-2009
Show Abstract
Hide Abstract
Neuronal nitric oxide synthase (nNOS) is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO) mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice.
Related JoVE Video
Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism.
Cell
PUBLISHED: 04-03-2009
Show Abstract
Hide Abstract
Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca(2+) responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.
Related JoVE Video
Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly.
Nat. Med.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 amounts in Lis1(+/-) mouse embryonic fibroblast cells and rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and beta-COP-positive vesicles. We also show that calpain inhibitors improve neuronal migration of Lis1(+/-) cerebellar granular neurons. Intraperitoneal injection of the calpain inhibitor ALLN to pregnant Lis1(+/-) dams rescued apoptotic neuronal cell death and neuronal migration defects in Lis1(+/-) offspring. Furthermore, in utero knockdown of calpain by short hairpin RNA rescued defective cortical layering in Lis1(+/-) mice. Thus, calpain inhibition is a potential therapeutic intervention for lissencephaly.
Related JoVE Video
KF-1 Ubiquitin Ligase: An Anxiety Suppressor.
Front Neurosci
PUBLISHED: 01-29-2009
Show Abstract
Hide Abstract
Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located on the endoplasmic reticulum (ER), may prevent excessive anxiety; kf-1(-/-) mice exhibit selectively elevated anxiety-like behavior against light or heights. It is surmised that KF-1 degrades some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinsons disease (PD). Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1(-/-) mice may be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.
Related JoVE Video
Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests.
Front Behav Neurosci
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
Dynamic regulation of the intracellular Ca2+ concentration is crucial for various neuronal functions such as synaptic transmission and plasticity, and gene expression. Ryanodine receptors (RyRs) are a family of intracellular calcium release channels that mediate calcium-induced calcium release from the endoplasmic reticulum. Among the three RyR isoforms, RyR3 is preferentially expressed in the brain especially in the hippocampus and striatum. To investigate the behavioral effects of RyR3 deficiency, we subjected RyR3 knockout (RyR3-/-) mice to a battery of behavioral tests. RyR3-/- mice exhibited significantly decreased social contact duration in two different social interaction tests, where two mice can freely move and make contacts with each other. They also exhibited hyperactivity and mildly impaired prepulse inhibition and latent inhibition while they did not show significant abnormalities in motor function and working and reference memory tests. These results indicate that RyR3 has an important role in locomotor activity and social behavior.
Related JoVE Video
Behavioral abnormalities observed in Zfhx2-deficient mice.
PLoS ONE
Show Abstract
Hide Abstract
Zfhx2 (also known as zfh-5) encodes a transcription factor containing three homeobox domains and 18 Zn-finger motifs. We have reported that Zfhx2 mRNA is expressed mainly in differentiating neurons in the mouse brain and its expression level is negatively regulated by the antisense transcripts of Zfhx2. Although the expression profile of Zfhx2 suggests that ZFHX2 might have a role in a particular step of neuronal differentiation, the specific function of the gene has not been determined. We generated a Zfhx2-deficient mouse line and performed a comprehensive battery of behavioral tests to elucidate the function of ZFHX2. Homozygous Zfhx2-deficient mice showed several behavioral abnormalities, namely, hyperactivity, enhanced depression-like behaviors, and an aberrantly altered anxiety-like phenotype. These behavioral phenotypes suggest that ZFHX2 might play roles in controlling emotional aspects through the function of monoaminergic neurons where ZFHX2 is expressed. Moreover, considering their phenotypes, the Zfhx2-deficient mice may provide a novel model of human psychiatric disorders.
Related JoVE Video
Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice.
Mol Brain
Show Abstract
Hide Abstract
Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice.
Related JoVE Video
Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice.
Front Behav Neurosci
Show Abstract
Hide Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC(1)). Recent studies reveal that genetic variants of the PACAP and PAC(1) genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawleys three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory.
Related JoVE Video
Increased astrocytic ATP release results in enhanced excitability of the hippocampus.
Glia
Show Abstract
Hide Abstract
Astrocytes, a major subtype of glia, interact with neurons as a supportive partner supplying energy sources and growth factors. Astrocytes regulate the activity of neighboring neurons by releasing chemical transmitters (gliotransmitters). However, the precise role of gilotransmitters in regulating neuronal activity is still under debate. Here, we report that a subtle enhancement in the release of one gliotransmitter, ATP, affects synaptic potentiation from an analysis of mice containing an astrocyte-selective (GFAP) mutation. We found that, relative to normal mice, weaker stimulation induced long-term potentiation (LTP) in mutant mice, indicating that the threshold to induce LTP was lowered in the mutant. While excitatory transmission was normal in the mutant, inhibitory GABAergic transmission was suppressed. We found that a low concentration of adenosine selectively attenuated inhibitory neuronal activity and lowered the threshold to induce LTP in wild type mice. In comparison, adenosine A(1) receptor antagonism reversed the lowered LTP threshold back to normal in the mutant mouse. We verified that adenosine levels in the cerebrospinal fluid of mutant mice were slightly elevated compared to wild type mice. This was apparently caused by an increase in ATP release from mutant astrocytes that could provide a source of augmented adenosine levels in the mutant. ATP is thought to suppress the excitability of neuronal circuits; however, a small increase in ATP release can result in a suppressed inhibitory tone and enhanced excitability of neuronal circuitry. These findings demonstrate that ATP released from astrocytes acts in a bidirectional fashion to regulate neuronal excitability depending on concentration.
Related JoVE Video
?-Synuclein BAC transgenic mice as a model for Parkinsons disease manifested decreased anxiety-like behavior and hyperlocomotion.
Neurosci. Res.
Show Abstract
Hide Abstract
?-Synuclein (?-syn), the main component of Lewy bodies, was identified as a genetic risk factor for idiopathic Parkinsons disease (PD). As a model for PD, we generated human ?-syn bacterial artificial chromosome transgenic mice (BAC tg mice) harboring the entire human ?-syn gene and its gene expression regulatory regions. The ?-syn BAC tg mice manifested decreased anxiety-like behaviors which may reflect non-motor symptoms of early PD, and they exhibited increased SERT expression that may be responsible for decreased anxiety-like behaviors. Our ?-syn BAC tg mice could be a valuable tool to evaluate ?-syn gene dosage effects in vivo.
Related JoVE Video
M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition.
Mol Brain
Show Abstract
Hide Abstract
In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimers disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear.
Related JoVE Video
T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice.
J Vis Exp
Show Abstract
Hide Abstract
Forced alternation and left-right discrimination tasks using the T-maze have been widely used to assess working and reference memory, respectively, in rodents. In our laboratory, we evaluated the two types of memory in more than 30 strains of genetically engineered mice using the automated version of this apparatus. Here, we present the modified T-maze apparatus operated by a computer with a video-tracking system and our protocols in a movie format. The T-maze apparatus consists of runways partitioned off by sliding doors that can automatically open downward, each with a start box, a T-shaped alley, two boxes with automatic pellet dispensers at one side of the box, and two L-shaped alleys. Each L-shaped alley is connected to the start box so that mice can return to the start box, which excludes the effects of experimenter handling on mouse behavior. This apparatus also has an advantage that in vivo microdialysis, in vivo electrophysiology, and optogenetics techniques can be performed during T-maze performance because the doors are designed to go down into the floor. In this movie article, we describe T-maze tasks using the automated apparatus and the T-maze performance of ?-CaMKII+/- mice, which are reported to show working memory deficits in the eight-arm radial maze task. Our data indicated that ?-CaMKII+/- mice showed a working memory deficit, but no impairment of reference memory, and are consistent with previous findings using the eight-arm radial maze task, which supports the validity of our protocol. In addition, our data indicate that mutants tended to exhibit reversal learning deficits, suggesting that ?-CaMKII deficiency causes reduced behavioral flexibility. Thus, the T-maze test using the modified automatic apparatus is useful for assessing working and reference memory and behavioral flexibility in mice.
Related JoVE Video
Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice.
BMC Res Notes
Show Abstract
Hide Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU)-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.