JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Revision of Chinese Dilaridae (Insecta: Neuroptera) (Part I): species of the genus Dilar Rambur from northern China.
Zootaxa
PUBLISHED: 12-31-2014
Show Abstract
Hide Abstract
The pleasing lacewing genus Dilar Rambur is a dominant group of the family Dilaridae in Asia and is diverse in China with 18 described species. Herein we record five species of Dilar. Three species, i.e. Dilar hastatus sp.nov., Dilar spectabilis sp.nov. and Dilar taibaishanus sp.nov. are described as new to science. Dilar sinicus Nakahara and Dilar septentrionalis Navás are also redescribed. A key to the species of Dilar from northern China is given. 
Related JoVE Video
Phylogenomics resolves the timing and pattern of insect evolution.
Bernhard Misof, Shanlin Liu, Karen Meusemann, Ralph S Peters, Alexander Donath, Christoph Mayer, Paul B Frandsen, Jessica Ware, Tomáš Flouri, Rolf G Beutel, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco, Torsten Wappler, Jes Rust, Andre J Aberer, Ulrike Aspöck, Horst Aspöck, Daniela Bartel, Alexander Blanke, Simon Berger, Alexander Böhm, Thomas R Buckley, Brett Calcott, Junqing Chen, Frank Friedrich, Makiko Fukui, Mari Fujita, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S Jermiin, Akito Y Kawahara, Lars Krogmann, Martin Kubiak, Robert Lanfear, Harald Letsch, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida, Yuta Mashimo, Pashalia Kapli, Duane D McKenna, Guanliang Meng, Yasutaka Nakagaki, José Luis Navarrete-Heredia, Michael Ott, Yanxiang Ou, Günther Pass, Lars Podsiadlowski, Hans Pohl, Björn M von Reumont, Kai Schütte, Kaoru Sekiya, Shota Shimizu, Adam Slipinski, Alexandros Stamatakis, Wenhui Song, Xu Su, Nikolaus U Szucsich, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler, Shigekazu Tomizuka, Michelle Trautwein, Xiaoli Tong, Toshiki Uchifune, Manfred G Walzl, Brian M Wiegmann, Jeanne Wilbrandt, Benjamin Wipfler, Thomas K F Wong, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K Yeates, Kazunori Yoshizawa, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M Kjer, Xin Zhou.
Science
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Related JoVE Video
New species of the genus Nipponeurorthus Nakahara, 1958 (Neuroptera: Nevrorthidae) from China.
Zootaxa
PUBLISHED: 07-16-2014
Show Abstract
Hide Abstract
The lacewing family Nevrorthidae is one of the most mysterious groups of Neuroptera. Here we describe two new species of the genus Nipponeurorthus Nakahara, 1958 from China, namely Nipponeurorthus damingshanicus sp. nov. and Nipponeurorthus furcatus sp. nov. A key to the species of Nipponeurorthus is provided. Phylogenetic and biogeographic considerations on Nipponeurorthus are summarized.
Related JoVE Video
The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data.
BMC Evol. Biol.
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups.
Related JoVE Video
Inocellia rara sp. nov. (Raphidioptera: Inocelliidae), a new snakefly species from Taiwan, with remarks on systematics and biogeography of the Inocelliidae of the island.
Zootaxa
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
A new species of the snakefly genus Inocellia Schneider, 1843 from Taiwan is described: Inocellia rara sp. nov. It represents the third species in the family Inocelliidae and the first record of the Inocellia fulvostigmata species group from Taiwan.
Related JoVE Video
Head anatomy of adult Sisyra terminalis (Insecta: Neuroptera: Sisyridae) - Functional adaptations and phylogenetic implications.
Arthropod Struct Dev
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
The external and internal head anatomy of Sisyra terminalis is described in detail and compared with data from literature. A salivary pump consisting of a peculiar reservoir and a hitherto unknown muscle, M. ductus salivarii, is newly described for Neuroptera. The upward folded paraglossae form a secondary prolongation of the salivary system. These structures are discussed as functional adaptations for feeding on aphids and desiccated honeydew. In a phylogenetic analysis the basal position of the Sisyridae within Neuroptera is retrieved. The following new synapomorphies are postulated: (1) for Neuropterida, the presence of a M. submentomentalis and prepharyngeal ventral transverse muscles, and the absence of a M. submentopraementalis; (2) for Neuroptera and Sialidae, the presence of a mandibular gland; (3) for Neuroptera, the presence of four scapopedicellar muscles; (4) for Neuroptera exclusive Nevrorthidae and Sisyridae, the weakening of dorsal tentorial arms, the presence of a M. tentoriomandibularis medialis superior and the shifted origin of M. tentoriocardinalis.
Related JoVE Video
The function and phylogenetic implications of the tentorium in adult Neuroptera (Insecta).
Arthropod Struct Dev
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
Despite several recent analyses on the phylogeny of Neuroptera some questions still remain to be answered. In the present analysis we address these questions by exploring a hitherto unexplored character complex: the tentorium, the internal cuticular support structure of the insect head. We described in detail the tentoria of representatives of all extant neuropteran families and the muscles originating on the tentorium using 3D microCT images and analyzed differences in combination with a large published matrix based on larval characters. We find that the tentorium and associated musculature are a source of phylogenetically informative characters. The addition of the tentorial characters to the larval matrix causes a basad shift of the Sisyridae and clearly supports a clade of all Neuroptera except Sisyridae and Nevrorthidae. A sister group relationship of Coniopterygidae and the dilarid clade is further corroborated. A general trend toward a reduction of the dorsal tentorial arms and the development of laminatentoria is observed. In addition to the phylogenetic analysis, a correlation among the feeding habits, the development of the maxillary muscles, and the laminatentoria is demonstrated.
Related JoVE Video
New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy.
PLoS ONE
Show Abstract
Hide Abstract
The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.