JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Decreased serum osmolality promotes ductus arteriosus constriction.
Cardiovasc. Res.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
At birth, dynamic changes occur in serum components and haemodynamics, such as closure of the ductus arteriosus (DA). A previous study demonstrated that, in full-term human neonates, serum osmolality decreased transiently after birth, but recovered over the next few days. However, the significance of this transient decrease in osmolality has never been addressed. The objective of the present study was to examine the role of changes in serum osmolality after birth in DA closure.
Related JoVE Video
Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3.
Cardiovasc Diabetol
PUBLISHED: 07-04-2014
Show Abstract
Hide Abstract
BackgroundExendin-4, an exogenous glucagon-like peptide-1 receptor (GLP-1R) agonist, protects the heart from ischemia/reperfusion injury. However, the mechanisms for this protection are poorly understood. Caveolae, sarcolemmal invaginations, and caveolins, scaffolding proteins in caveolae, localize molecules involved in cardiac protection. We tested the hypothesis that caveolae and caveolins are essential for exendin-4 induced cardiac protection using in vitro and in vivo studies in control and caveolin-3 (Cav-3) knockout mice (Cav-3 KO).MethodsMyocytes were treated with exendin-4 and then incubated with methyl-ß-cyclodextrin (MßCD) to disrupt caveolae formation. This was then followed by simulated ischemia/reperfusion (SI/R). In addition, cardiac protection in vivo was assessed by measuring infarct size and cardiac troponin levels.ResultsExendin-4 protected cardiac myocytes (CM) from SI/R [35.6¿±¿12.6% vs. 64.4¿±¿18.0% cell death, P¿=¿0.034] and apoptosis but this protection was abolished by MßCD (71.8¿±¿10.8% cell death, P¿=¿0.004). Furthermore, Cav-3/GLP-1R co-localization was observed and membrane fractionation by sucrose density gradient centrifugation of CM treated with MßCD¿+¿exendin-4 revealed that buoyant (caveolae enriched) fractions decreased Cav-3 compared to CM treated with exendin-4 exclusively. Furthermore, exendin-4 induced a reduction in infarct size and cardiac troponin relative to control (infarct size: 25.1¿±¿8.2% vs. 41.4¿±¿4.1%, P¿<¿0.001; troponin: 36.9¿±¿14.2 vs. 101.1¿±¿22.3 ng/ml, P¿<¿0.001). However, exendin-4 induced cardiac protection was abolished in Cav-3 KO mice (infarct size: 43.0¿±¿6.4%, P¿<¿0.001; troponin: 96.8¿±¿26.6 ng/ml, P¿=¿0.001).ConclusionsWe conclude that caveolae and caveolin-3 are critical for exendin-4 induced protection of the heart from ischemia/reperfusion injury.
Related JoVE Video
Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses.
J. Clin. Invest.
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of ?-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKC?. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
Related JoVE Video
Hyperthermia generated with ferucarbotran (Resovist®) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells.
J Physiol Sci
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Hyperthermia is a promising anti-cancer treatment in which the tissue temperature is increased to 42-45 °C, and which is often used in combination with chemotherapy or radiation therapy. Our aim in the present work was to examine the feasibility of combination therapy for oral cancer with cisplatin and hyperthermia generated with ferucarbotran (Resovist(®); superparamagnetic iron oxide) in an alternating magnetic field (AMF). First, we established that administration of ferucarbotran at the approved dosage for magnetic resonance imaging provides an iron concentration sufficient to increase the temperature to 42.5 °C upon exposure to AMF. Then, we examined the effect of cisplatin combined with ferucarbotran/AMF-induced hyperthermia on cultured human oral cancer cells (HSC-3 and OSC-19). Cisplatin alone induced apoptosis of cancer cells in a dose-dependent manner, as is well known. However, the combination of cisplatin with ferucarbotran/AMF was significantly more effective than cisplatin alone. This result suggests that it might be possible to reduce the clinically effective dosage of cisplatin by administering it in combination with ferucarbotran/AMF-induced hyperthermia, thereby potentially reducing the incidence of serious cisplatin-related side effects. Further work seems justified to evaluate simultaneous thermo-chemotherapy as a new approach to anticancer therapy.
Related JoVE Video
Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies.
Atherosclerosis
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Elastic fiber formation is disrupted with age and by health conditions including aneurysms and atherosclerosis. Despite considerable progress in the understanding of elastogenesis using the planar culture system and genetically modified animals, it remains difficult to restore elastic fibers in diseased vessels. To further study the molecular mechanisms, in vitro three-dimensional vascular constructs need to be established. We previously fabricated vascular smooth muscle cells (SMCs) into three-dimensional cellular multilayers (3DCMs) using a hierarchical cell manipulation technique, in which cells were coated with fibronectin-gelatin nanofilms to provide adhesive nano-scaffolds. Since fibronectin is known to assemble and activate elastic fiber-related molecules, we further optimized culture conditions.
Related JoVE Video
Geranylgeranylacetone protects the heart via caveolae and caveolin-3.
Life Sci.
PUBLISHED: 01-11-2014
Show Abstract
Hide Abstract
Geranylgeranylacetone (GGA) is commonly utilized to protect the gastric mucosa in peptic ulcer disease. Recently GGA has been shown to protect the myocardium from ischemia/reperfusion by activating heat shock proteins. However, the exact mechanism as to how GGA activates these protective proteins is unknown. Caveolae and caveolin-3 (Cav-3) have been implicated in ischemia, anesthetic, and opioid induced cardiac protection. Given the lipophilic nature of GGA it is our hypothesis that GGA induced cardiac protection requires caveolae and Cav-3.
Related JoVE Video
Thromboxane A(2) receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Ductus arteriosus (DA) closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP) stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.
Related JoVE Video
Protection of cardiomyocytes from the hypoxia-mediated injury by a peptide targeting the activator of G-protein signaling 8.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Signaling via heterotrimeric G-protein is involved in the development of human diseases including ischemia-reperfusion injury of the heart. We previously identified an ischemia-inducible G-protein activator, activator of G-protein signaling 8 (AGS8), which regulates G?? signaling and plays a key role in the hypoxia-induced apoptosis of cardiomyocytes. Here, we attempted to intervene in the AGS8-G?? signaling process and protect cardiomyocytes from hypoxia-induced apoptosis with a peptide that disrupted the AGS8-G?? interaction. Synthesized AGS8-peptides, with amino acid sequences based on those of the G??-binding domain of AGS8, successfully inhibited the association of AGS8 with G??. The AGS8-peptide effectively blocked hypoxia-induced apoptosis of cardiomyocytes, as determined by DNA end-labeling and an increase in cleaved caspase-3. AGS8-peptide also inhibited the change in localization/permeability of channel protein connexin 43, which was mediated by AGS8-G?? under hypoxia. Small compounds that inhibit a wide range of G?? signals caused deleterious effects in cardiomyocytes. In contrast, AGS8-peptide did not cause cell damage under normoxia, suggesting an advantage inherent in targeted disruption of the AGS8-G?? signaling pathway. These data indicate a pivotal role for the interaction of AGS8 with G?? in hypoxia-induced apoptosis of cardiomyocytes, and suggest that targeted disruption of the AGS8-G?? signal provides a novel approach for protecting the myocardium against ischemic injury.
Related JoVE Video
Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Store-operated Ca(2+) entry (SOCE) is a major mechanism of Ca(2) (+) import from extracellular to intracellular space, involving detection of Ca(2+) store depletion in endoplasmic reticulum (ER) by stromal interaction molecule (STIM) proteins, which then translocate to plasma membrane and activate Orai Ca(2+) channels there. We found that STIM1 and Orai1 isoforms were abundantly expressed in human melanoma tissues and multiple melanoma/melanocyte cell lines. We confirmed that these cell lines exhibited SOCE, which was inhibited by knockdown of STIM1 or Orai1, or by a pharmacological SOCE inhibitor. Inhibition of SOCE suppressed melanoma cell proliferation and migration/metastasis. Induction of SOCE was associated with activation of extracellular-signal-regulated kinase (ERK), and was inhibited by inhibitors of calmodulin kinase II (CaMKII) or Raf-1, suggesting that SOCE-mediated cellular functions are controlled via the CaMKII/Raf-1/ERK signaling pathway. Our findings indicate that SOCE contributes to melanoma progression, and therefore may be a new potential target for treatment of melanoma, irrespective of whether or not Braf mutation is present.
Related JoVE Video
Prostaglandin E2 Inhibits Elastogenesis in the Ductus Arteriosus via EP4 Signaling.
Circulation
PUBLISHED: 10-21-2013
Show Abstract
Hide Abstract
Elastic fiber formation begins in mid-gestation and increases dramatically during the last trimester in the great arteries, providing elasticity and thus preventing vascular wall structure collapse. However, the ductus arteriosus (DA), a fetal bypass artery between the aorta and pulmonary artery, exhibits lower levels of elastic fiber formation, which promotes vascular collapse and subsequent closure of the DA after birth. The molecular mechanisms for this inhibited elastogenesis in the DA, which is necessary for the establishment of adult circulation, remain largely unknown.
Related JoVE Video
Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: a novel therapeutic approach for cardiac fibrosis.
Mol. Pharmacol.
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
Tissue fibrosis is characterized by excessive production, deposition, and contraction of the extracellular matrix (ECM). The second messenger cAMP has antifibrotic effects in fibroblasts from several tissues, including cardiac fibroblasts (CFs). Increased cellular cAMP levels can prevent the transformation of CFs into profibrogenic myofibroblasts, a critical step that precedes increased ECM deposition and tissue fibrosis. Here we tested two hypotheses: 1) myofibroblasts have a decreased ability to accumulate cAMP in response to G protein-coupled receptor (GPCR) agonists, and 2) increasing cAMP will not only prevent, but also reverse, the myofibroblast phenotype. We found that myofibroblasts produce less cAMP in response to GPCR agonists or forskolin and have decreased expression of several adenylyl cyclase (AC) isoforms and increased expression of multiple cyclic nucleotide phosphodiesterases (PDEs). Furthermore, we found that forskolin-promoted increases in cAMP or N(6)-phenyladenosine-cAMP, a protein kinase A-selective analog, reverse the myofibroblast phenotype, as assessed by the expression of collagen I?1, ?-smooth muscle actin, plasminogen activator inhibitor-1, and cellular contractile abilities, all hallmarks of a fibrogenic state. These results indicate that: 1) altered expression of AC and PDE isoforms yield a decrease in cAMP concentrations of cardiac myofibroblasts (relative to CFs) that likely contributes to their profibrotic state, and 2) approaches to increase cAMP concentrations not only prevent fibroblast-to-myofibroblast transformation but also can reverse the profibrotic myofibroblastic phenotype. We conclude that therapeutic strategies designed to enhance cellular cAMP concentrations in CFs may provide a means to reverse excessive scar formation following injury and to treat cardiac fibrosis.
Related JoVE Video
Transcription Profiles of Endothelial Cells in the Rat Ductus Arteriosus during a Perinatal Period.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Endothelial cells (ECs) lining the blood vessels serve a variety of functions and play a central role in the homeostasis of the circulatory system. Since the ductus arteriosus (DA) has different arterial characteristics from its connecting vessels, we hypothesized that ECs of the DA exhibited a unique gene profile involved in the regulation of DA-specific morphology and function. Using a fluorescence-activated cell sorter, we isolated ECs from pooled tissues from the DA or the descending aorta of Wistar rat fetuses at full-term of gestation (F group) or neonates 30 minutes after birth (N group). Using anti-CD31 and anti-CD45 antibodies as cell surface markers for ECs and hematopoietic derived cells, respectively, cDNAs from the CD31-positive and CD45-negative cells were hybridized to the Affymetrix GeneChip® Rat Gene 1.0 ST Array. Among 26,469 gene-level probe sets, 82 genes in the F group and 81 genes in the N group were expressed at higher levels in DA ECs than in aortic ECs (p<0.05, fold change>2.0). In addition to well-known endothelium-enriched genes such as Tgfb2 and Vegfa, novel DA endothelium-dominant genes including Slc38a1, Capn6, and Lrat were discovered. Enrichment analysis using GeneGo MetaCore software showed that DA endothelium-related biological processes were involved in morphogenesis and development. We identified many overlapping genes in each process including neural crest-related genes (Hoxa1, Hoxa4, and Hand2, etc) and the second heart field-related genes (Tbx1, Isl1, and Fgf10, etc). Moreover, we found that regulation of epithelial-to-mesenchymal transition, cell adhesion, and retinol metabolism are the active pathways involved in the network via potential interactions with many of the identified genes to form DA-specific endothelia. In conclusion, the present study uncovered several significant differences of the transcriptional profile between the DA and aortic ECs. Newly identified DA endothelium-dominant genes may play an important role in DA-specific functional and morphologic characteristics.
Related JoVE Video
The prostanoid EP4 receptor and its signaling pathway.
Pharmacol. Rev.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin E2. It belongs to the family of G protein-coupled receptors. It was originally identified, similar to the EP2 receptor as a G(s)?-coupled, adenylyl cyclase-stimulating receptor. EP4 signaling plays a variety of roles through cAMP effectors, i.e., protein kinase A and exchange protein activated by cAMP. However, emerging evidence from studies using pharmacological approaches and genetically modified mice suggests that EP4, unlike EP2, can also be coupled to G(i)?, phosphatidylinositol 3-kinase, ?-arrestin, or ?-catenin. These signaling pathways constitute unique roles for the EP4 receptor. EP4 is widely distributed in the body and thus plays various physiologic and pathophysiologic roles. In particular, EP4 signaling is closely related to carcinogenesis, cardiac hypertrophy, vasodilation, vascular remodeling, bone remodeling, gastrointestinal homeostasis, renal function, and female reproductive function. In addition to the classic anti-inflammatory action of EP4 on mononuclear cells and T cells, recent evidence has shown that EP4 signaling contributes to proinflammatory action as well. The aim of this review is to present current findings on the biologic functions of the EP4 receptor. In particular, we will discuss its diversity from the standpoint of EP4-mediated signaling.
Related JoVE Video
Secretoglobin 3A2 suppresses bleomycin-induced pulmonary fibrosis by transforming growth factor beta signaling down-regulation.
J. Biol. Chem.
PUBLISHED: 04-10-2011
Show Abstract
Hide Abstract
With increasing worldwide rates of morbidity and mortality of pulmonary fibrosis, the development of effective therapeutics for this disease is of great interest. Secretoglobin (SCGB) 3A2, a novel cytokine-like molecule predominantly expressed in pulmonary airways epithelium, exhibits anti-inflammatory and growth factor activities. In the current study SCGB3A2 was found to inhibit TGF?-induced differentiation of fibroblasts to myofibroblasts, a hallmark of the fibrogenic process, using pulmonary fibroblasts isolated from adult mice. This induction was through increased phosphorylation of STAT1 and expression of SMAD7 and decreased phosphorylation of SMAD2 and SMAD3. To demonstrate the effect of SCGB3A2 on the TGF? signaling in vivo, a bleomycin-induced pulmonary fibrosis mouse model was used. Mice were administered bleomycin intratracheally followed by intravenous injection of recombinant SCGB3A2. Histological examination in conjunction with inflammatory cell counts in bronchoalveolar lavage fluids demonstrated that SCGB3A2 suppressed bleomycin-induced pulmonary fibrosis. Microarray analysis was carried out using RNAs from lungs of bleomycin-treated mice with or without SCGB3A2 and normal mice treated with SCGB3A2. The results demonstrated that SCGB3A2 affects TGF? signaling and reduces the expression of genes involved in fibrosis. This study suggests the potential utility of SCGB3A2 for targeting TGF? signaling in the treatment of pulmonary fibrosis.
Related JoVE Video
Identification of transcription factor E3 (TFE3) as a receptor-independent activator of G?16: gene regulation by nuclear G? subunit and its activator.
J. Biol. Chem.
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
Receptor-independent G-protein regulators provide diverse mechanisms for signal input to G-protein-based signaling systems, revealing unexpected functional roles for G-proteins. As part of a broader effort to identify disease-specific regulators for heterotrimeric G-proteins, we screened for such proteins in cardiac hypertrophy using a yeast-based functional screen of mammalian cDNAs as a discovery platform. We report the identification of three transcription factors belonging to the same family, transcription factor E3 (TFE3), microphthalmia-associated transcription factor, and transcription factor EB, as novel receptor-independent activators of G-protein signaling selective for G?(16). TFE3 and G?(16) were both up-regulated in cardiac hypertrophy initiated by transverse aortic constriction. In protein interaction studies in vitro, TFE3 formed a complex with G?(16) but not with G?(i3) or G?(s). Although increased expression of TFE3 in heterologous systems had no influence on receptor-mediated G?(16) signaling at the plasma membrane, TFE3 actually translocated G?(16) to the nucleus, leading to the induction of claudin 14 expression, a key component of membrane structure in cardiomyocytes. The induction of claudin 14 was dependent on both the accumulation and activation of G?(16) by TFE3 in the nucleus. These findings indicate that TFE3 and G?(16) are up-regulated under pathologic conditions and are involved in a novel mechanism of transcriptional regulation via the relocalization and activation of G?(16).
Related JoVE Video
The roles of cytochrome p450 in ischemic heart disease.
Curr. Drug Metab.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Cytochrome P450 (CYP) represents a large family of enzymes that catalyze the oxidation of endogenous and exogenous compounds. The functions of CYP enzymes in the metabolism of xenobiotics have well been established in the liver. However, some CYP enzymes are highly expressed in the heart and catalyze arachidonic acid oxidation to a variety of eicosanoids, which attenuates ischemia-reperfusion injury of the heart. CYP-mediated cardioprotection is associated with activation of multiple pathways such as sarcolemmal and mitochondrial potassium channels, p42/p44 MAPK and PI3K-AKT signaling in cells. CYP enzymes also represent a significant source of reactive oxygen species (ROS) that may target cellular homeostatic mechanisms and mitochondria. CYP isoforms expressed in the heart are critical for generation of epoxyeicosatrienoic acids (EETs) and ROS. It has been demonstrated that CYP2J2 generates cardioprotective EETs, whereas another isozyme in the heart, CYP2C, generates EETs as well as detrimental ROS. Genetic polymorphisms of CYP2C or CYP2J2 have a pathologic impact on coronary artery diseases. Cardiac CYP enzymes can be involved in drug metabolism within the heart and influence pharmacologic efficacy. Metabolism mediated by CYP enzymes influences the survival of cardiomyocytes during ischemia, which is critical for treatment of human ischemic heart disease. In this review, we summarize current knowledge of this enzyme family and discuss the roles of CYP in ischemia-reperfusion injury of the heart.
Related JoVE Video
DNA microarray profiling identified a new role of growth hormone in vascular remodeling of rat ductus arteriosus.
J Physiol Sci
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The ductus arteriosus (DA), a fetal arterial connection between the pulmonary artery and the aorta, has a character distinct from the adjacent arteries. We compared the transcriptional profiles of the DA and the aorta of Wistar rat fetuses on embryonic day 19 (preterm) and day 21 (near-term) using DNA microarray analyses. We found that 39 genes were expressed 2.5-fold greater in the DA than in the aorta. Growth hormone (GH) receptor (GHR) exhibited the most significant difference in expression. Then, we found that GH significantly promoted migration of DA smooth muscle cells (SMCs), thus enhancing the intimal cushion formation of the DA explants. GH also regulated the expression of cytoskeletal genes in DA SMCs, which may retain a synthetic phenotype in the smooth muscle-specific cytoskeletal genes. Thus, the present study revealed that GH-GHR signal played a role in the vascular remodeling of the DA.
Related JoVE Video
Morphological and histological evaluations of 3D-layered blood vessel constructs prepared by hierarchical cell manipulation.
J Biomater Sci Polym Ed
PUBLISHED: 12-21-2010
Show Abstract
Hide Abstract
Three-dimensional (3D)-layered blood vessel constructs consisting of human umbilical artery smooth muscle cells (SMCs) and human umbilical vascular endothelial cells (ECs) were fabricated by hierarchical cell manipulation, and their basic morphology, histology and blood compatibility were evaluated in relation to the EC layers. For the hierarchical cell manipulation, fibronectin-gelatin (FN-G) nanofilms were prepared on the surface of SMC layers to provide a cell adhesive nano-scaffold for the second layer of cells. The layer number of blood vessel constructs was easily controllable from 2 to 7 layers, and the histological evaluation, scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicated a hierarchical blood vessel analogous morphology. The immunefluorescence staining revealed homogeneous and dense tight-junction of the uppermost EC layer. Furthermore, the nano-meshwork morphology of the FN-G films like a native extracellular matrix was observed inside the blood vessel constructs by SEM. Moreover, a close association between actin microfilaments and the nano-meshworks was observed on the SMC surface by TEM. The blood compatibility of the blood vessel constructs, 4-layered SMC/1-layered EC (4L-SMC/1L-EC), was clearly confirmed by inhibition of platelet adhesion, whereas the blood vessel constructs without EC layers (4L-SMC) showed high adhesion and activation of the platelet. The 3D-blood vessel constructs prepared by hierarchical cell manipulation technique will be valuable as a blood vessel model in the tissue engineering or pharmaceutical fields.
Related JoVE Video
Regulation of vascular tone and remodeling of the ductus arteriosus.
J Smooth Muscle Res
PUBLISHED: 06-17-2010
Show Abstract
Hide Abstract
The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The DA is a normal and essential fetal structure. However, it becomes abnormal if it remains patent after birth. Closure of the DA occurs in two phases: functional closure of the lumen within the first hours after birth by smooth muscle constriction, and anatomic occlusion of the lumen over the next several days due to extensive neointimal thickening in human DA. There are several events that promote the DA constriction immediately after birth: (a) an increase in arterial oxygen tension, (b) a dramatic decline in circulating prostaglandinE(2) (PGE(2)), (c) a decrease in blood pressure within the DA lumen, and (d) a decrease in the number of PGE(2) receptors in the DA wall. Anatomical closure of the DA is associated with the formation of intimal thickening, which are characterized by (a) an area of subendothelial deposition of extracellular matrix, (b) the disassembly of the internal elastic lamina and loss of elastic fiber in the medial layer, and (c) migration into the subendothelial space of undifferentiated medial smooth muscle cells. In addition to the well-known vasodilatory role of PGE(2), our findings uncovered the role of PGE(2) in anatomical closure of the DA. Chronic PGE(2)-EP4-cyclic AMP (cAMP)-protein kinase A (PKA) signaling during gestation induces vascular remodeling of the DA to promote hyaluronan-mediated intimal thickening and structural closure of the vascular lumen. A novel target of cAMP, Epac, has an acute promoting effect on smooth muscle cell migration without hyaluronan production and thus intimal thickening in the DA. Both EP4-cAMP downstream targets, Epac and PKA, regulate vascular remodeling in the DA.
Related JoVE Video
Differential roles of Epac in regulating cell death in neuronal and myocardial cells.
J. Biol. Chem.
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Cell survival and death play critical roles in tissues composed of post-mitotic cells. Cyclic AMP (cAMP) has been known to exert a distinct effect on cell susceptibility to apoptosis, protecting neuronal cells and deteriorating myocardial cells. These effects are primarily studied using protein kinase A activation. In this study we show the differential roles of Epac, an exchange protein activated by cAMP and a new effector molecule of cAMP signaling, in regulating apoptosis in these cell types. Both stimulation of Epac by 8-p-methoxyphenylthon-2-O-methyl-cAMP and overexpression of Epac significantly increased DNA fragmentation and TUNEL (terminal deoxynucleotidyltransferase-mediated biotin nick end-labeling)-positive cell counts in mouse cortical neurons but not in cardiac myocytes. In contrast, stimulation of protein kinase A increased apoptosis in cardiac myocytes but not in neuronal cells. In cortical neurons the expression of the Bcl-2 interacting member protein (Bim) was increased by stimulation of Epac at the transcriptional level and was decreased in mice with genetic disruption of Epac1. Epac-induced neuronal apoptosis was attenuated by the silencing of Bim. Furthermore, Epac1 disruption in vivo abolished the 3-nitropropionic acid-induced neuronal apoptosis that occurs in wild-type mice. These results suggest that Epac induces neuron-specific apoptosis through increasing Bim expression. Because the disruption of Epac exerted a protective effect on neuronal apoptosis in vivo, the inhibition of Epac may be a consideration in designing a therapeutic strategy for the treatment of neurodegenerative diseases.
Related JoVE Video
Differential regulation of vascular tone and remodeling via stimulation of type 2 and type 6 adenylyl cyclases in the ductus arteriosus.
Circ. Res.
PUBLISHED: 04-29-2010
Show Abstract
Hide Abstract
Prostaglandin (PG)E(2), which increases intracellular cAMP via activation of adenylyl cyclases (ACs), induces vasodilation and hyaluronan-mediated intimal thickening (IT) in the ductus arteriosus (DA) during late gestation. After birth, however, differential regulation of vasodilation and IT is preferable for treatment of patients with patent DA and DA-dependent congenital cardiac malformations.
Related JoVE Video
Caveolin gene transfer improves glucose metabolism in diabetic mice.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 11-18-2009
Show Abstract
Hide Abstract
Caveolin, a member of the membrane-anchoring protein family, accumulates various growth receptors in caveolae and inhibits their function. Upregulation of caveolin attenuates cellular proliferation and growth. However, the role of caveolin in regulating insulin signals remains controversial. Here, we demonstrate that caveolin potently enhances insulin receptor (IR) signaling when overexpressed in the liver in vivo. Adenovirus-mediated gene transfer was used to overexpress caveolin specifically in the liver of diabetic obese mice, which were generated with a high-fat diet. Expression of molecules involved in IR signaling, such as IR or Akt, remained unchanged after gene transfer. However, hepatic glycogen synthesis was markedly increased with a decrease in phosphoenolpyruvate carboxykinase protein expression. Insulin sensitivity was increased after caveolin gene transfer as determined by decreased blood glucose levels in response to insulin injection and fasting blood glucose levels. Glucose tolerant test performance was also improved. Similar improvements were obtained in KKA(y) genetically diabetic mice. Adenovirus-mediated overexpression of caveolin-3 in hepatic cells also enhanced IR signaling, as shown by increased phosphorylation of IR in response to insulin stimulation and higher glycogen synthesis at baseline. These effects were attributed mostly to increased insulin receptor activity and caveolin-mediated, direct inhibition of protein tyrosine phosphatase 1B, which was increased in obese mouse livers. In conclusion, our results suggest that caveolin is an important regulator of glucose metabolism that can enhance insulin signals.
Related JoVE Video
Genetic screening of 104 patients with congenitally malformed hearts revealed a fresh mutation of GATA4 in those with atrial septal defects.
Cardiol Young
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
We analysed the GATA binding protein 4 gene, or GATA4, along with the NK2 transcription factor related, locus 5 gene, or NKX2.5, to determine their genetic contribution to 104 sporadic patients in Indonesia with congenitally malformed hearts, 76 cases having atrial septal defect and 28 tetralogy of Fallot. We found only 1 novel mutation of GATA4 in those with atrial septal defects. Analysis of the genetic background of the parents of the patient showed for the first time that a new mutation of GATA4 can cause sporadic atrial septal defects. We failed to discover any other mutations of either the GATA4 or NKX2-5 genes, supporting the marked genetic heterogeneity of human congenital cardiac defects.
Related JoVE Video
T-type Ca2+ channels promote oxygenation-induced closure of the rat ductus arteriosus not only by vasoconstriction but also by neointima formation.
J. Biol. Chem.
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
The ductus arteriosus (DA), an essential vascular shunt for fetal circulation, begins to close immediately after birth. Although Ca(2+) influx through several membrane Ca(2+) channels is known to regulate vasoconstriction of the DA, the role of the T-type voltage-dependent Ca(2+) channel (VDCC) in DA closure remains unclear. Here we found that the expression of alpha1G, a T-type isoform that is known to exhibit a tissue-restricted expression pattern in the rat neonatal DA, was significantly up-regulated in oxygenated rat DA tissues and smooth muscle cells (SMCs). Immunohistological analysis revealed that alpha1G was localized predominantly in the central core of neonatal DA at birth. DA SMC migration was significantly increased by alpha1G overexpression. Moreover, it was decreased by adding alpha1G-specific small interfering RNAs or using R(-)-efonidipine, a highly selective T-type VDCC blocker. Furthermore, an oxygenation-mediated increase in an intracellular Ca(2+) concentration of DA SMCs was significantly decreased by adding alpha1G-specific siRNAs or using R(-)-efonidipine. Although a prostaglandin E receptor EP4 agonist potently promoted intimal thickening of the DA explants, R(-)-efonidipine (10(-6) m) significantly inhibited EP4-promoted intimal thickening by 40% using DA tissues at preterm in organ culture. Moreover, R(-)-efonidipine (10(-6) m) significantly attenuated oxygenation-induced vasoconstriction by approximately 27% using a vascular ring of fetal DA at term. Finally, R(-)-efonidipine significantly delayed the closure of in vivo DA in neonatal rats. These results indicate that T-type VDCC, especially alpha1G, which is predominantly expressed in neonatal DA, plays a unique role in DA closure, implying that T-type VDCC is an alternative therapeutic target to regulate the patency of DA.
Related JoVE Video
Comparison of markers for fetal inflammatory response syndrome: fetal blood interleukin-6 and neonatal urinary beta(2)-microglobulin.
J. Obstet. Gynaecol. Res.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
Chronic lung disease (CLD) is a major component in the morbidity of premature infants suffering from fetal inflammatory response (FIRS). The aim of the present study was to compare the value of measuring neonatal urinary beta(2)-microglobulin (beta(2)-MG) levels with fetal blood interleukin (IL)-6 levels in premature infants at risk of developing CLD.
Related JoVE Video
Pharmacological stimulation of type 5 adenylyl cyclase stabilizes heart rate under both microgravity and hypergravity induced by parabolic flight.
J. Pharmacol. Sci.
Show Abstract
Hide Abstract
We previously demonstrated that type 5 adenylyl cyclase (AC5) functions in autonomic regulation in the heart. Based on that work, we hypothesized that pharmacological modulation of AC5 activity could regulate the autonomic control of the heart rate under micro- and hypergravity. To test this hypothesis, we selected the approach of activating AC5 activity in mice with a selective AC5 activator (NKH477) or inhibitor (vidarabine) and examining heart rate variability during parabolic flight. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater under micro- and hypergravity in the vidarabine group, while there were no significant changes in the NKH477 group, suggesting that autonomic regulation was unstable in the vidarabine group. The ratio of low frequency and high frequency (HF) in heart rate variability analysis, a marker of sympathetic activity, became significantly decreased under micro- and hypergravity in the NKH477 group, while there was no such decrease in the vidarabine group. Normalized HF, a marker of parasympathetic activity, became significantly greater under micro- and hypergravity in the NKH477 group. In contrast, there was no such increase in the vidarabine group. This study is the first to indicate that pharmacological modulation of AC5 activity under micro- and hypergravity could be useful to regulate the autonomic control of the heart rate.
Related JoVE Video
Inhibition of phosphodiesterase type 3 dilates the rat ductus arteriosus without inducing intimal thickening.
Circ. J.
Show Abstract
Hide Abstract
?Prostaglandin E(1) (PGE(1)), via cAMP, dilates the ductus arteriosus (DA). For patients with DA-dependent congenital heart disease (CHD), PGE(1) is the sole DA dilator that is used until surgery, but PGE(1) has a short duration of action, and frequently induces apnea. Most importantly, PGE(1) increases hyaluronan (HA) production, leading to intimal thickening (IT) and eventually DA stenosis after long-term use. The purpose of this study was therefore to investigate potential DA dilators, such as phosphodiesterase 3 (PDE3) inhibitors, as alternatives to PGE(1).
Related JoVE Video
Low-dose thromboxane A2 receptor stimulation promotes closure of the rat ductus arteriosus with minimal adverse effects.
Pediatr. Res.
Show Abstract
Hide Abstract
Patent ductus arteriosus (PDA) is a common life-threatening complication among premature infants. Although cyclooxygenase inhibitors are frequently used to treat PDA, as they inhibit the synthesis of prostaglandin E(2), the most potent vasodilator in the ductus arteriosus (DA), their efficacy is often limited. As thromboxane A(2) (TXA(2)) induces vascular contraction via the TXA(2) receptor (TP), we hypothesized that TP stimulation would promote DA closure.
Related JoVE Video
Inhibition of EP4 signaling attenuates aortic aneurysm formation.
PLoS ONE
Show Abstract
Hide Abstract
Aortic aneurysm is a common but life-threatening disease among the elderly, for which no effective medical therapy is currently available. Activation of prostaglandin E(2) (PGE(2)) is known to increase the expression of matrix metalloproteinase (MMP) and the release of inflammatory cytokines, and may thus exacerbate abdominal aortic aneurysm (AAA) formation. We hypothesized that selective blocking of PGE(2), in particular, EP4 prostanoid receptor signaling, would attenuate the development of AAA.
Related JoVE Video
Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells.
J Physiol Sci
Show Abstract
Hide Abstract
Cellular reactive oxygen species (ROS) production is increased by both temperature and anticancer drugs. Antioxidants are known to suppress ROS production while cancer patients may take them as dietary supplement during chemotherapy and hyperthermic therapy. We examined changes in ROS production in prostate cancer cells in the presence of various anticancer drugs and antioxidants at different temperatures. ROS production was increased with temperature in cancer cells, but not in normal cells; this increase was potently inhibited by ascorbic acid. ROS production was also increased in the presence of some anticancer drugs, such as vinblastine, but not by others. Dietary antioxidant supplements, such as ?-carotene, showed variable effects. Ascorbic acid potently inhibited ROS production, even in the presence of anticancer drugs, while ?-carotene showed no inhibition. Accordingly, our results suggest that cancer patients should carefully choose antioxidants during their cancer chemotherapy and/or hyperthermic therapy.
Related JoVE Video
cAMP and Epac in the regulation of tissue fibrosis.
Br. J. Pharmacol.
Show Abstract
Hide Abstract
Fibrosis, the result of excess deposition of extracellular matrix (ECM), in particular collagen, leads to scarring and loss of function in tissues that include the heart, lung, kidney and liver. The second messenger cAMP can inhibit the formation and extent of ECM during this late phase of inflammation, but the mechanisms for these actions of cAMP and of agents that elevate tissue cAMP levels are not well understood. In this article, we review the fibrotic process and focus on two recently recognized aspects of actions of cAMP and its effector Epac (Exchange protein activated by cAMP): (a) blunting of epithelial-mesenchymal transformation (EMT) and (b) down-regulation of Epac expression by profibrotic agents (e.g. TGF-?, angiotensin II), which may promote tissue fibrosis by decreasing Epac-mediated antifibrotic actions. Pharmacological approaches that raise cAMP or blunt the decrease in Epac expression by profibrotic agents may thus be strategies to block or perhaps reverse tissue fibrosis. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.