JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27.
Res. Microbiol.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
The iron-oxidizing acidithiobacilli cluster into at least four groups, three of which (Acidithiobacillus ferrooxidans, Acidithiobacillus ferridurans and Acidithiobacillus ferrivorans) have been designated as separate species. While these have many physiological traits in common, they differ in some phenotypic characteristics including motility, and pH and temperature minima. In contrast to At. ferrooxidans and At. ferridurans, all At. ferrivorans strains analysed to date possess the iro gene (encoding an iron oxidase) and, with the exception of strain CF27, the rusB gene encoding an iso-rusticyanin whose exact function is uncertain. Strain CF27 differs from other acidithiobacilli by its marked propensity to form macroscopic biofilms in liquid media. To identify the genetic determinants responsible for the oxidation of ferrous iron and sulfur and for the formation of extracellular polymeric substances, the genome of At. ferrivorans CF27 strain was sequenced and comparative genomic studies carried out with other Acidithiobacillus spp.. Genetic disparities were detected that indicate possible differences in ferrous iron and reduced inorganic sulfur compounds oxidation pathways among iron-oxidizing acidithiobacilli. In addition, strain CF27 is the only sequenced Acidithiobacillus spp. to possess genes involved in the biosynthesis of fucose, a sugar known to confer high thickening and flocculating properties to extracellular polymeric substances.
Related JoVE Video
Characterization of a P1-Like Bacteriophage Carrying an SHV-2 Extended-Spectrum ?-Lactamase from an Escherichia coli Strain.
Antimicrob. Agents Chemother.
PUBLISHED: 08-18-2014
Show Abstract
Hide Abstract
P1 bacteriophages lysogenize bacteria as independent plasmid-like elements. We describe here a P1-like bacteriophage, RCS47, carrying a blaSHV-2 gene, isolated from a clinical strain of Escherichia coli from phylogroup B1, and we report the prevalence of P1-like prophages in natural E. coli isolates. We found that 70% of the sequence of RCS47, a 115-kb circular molecule, was common to the reference P1 bacteriophage under GenBank accession no. AF234172.1, with the shared sequences being 99% identical. RCS47 had acquired two main foreign DNA fragments: a 9,636-bp fragment mobilized by two IS26 elements containing a blaSHV-2 gene, and an 8,544-bp fragment mobilized by two IS5 elements containing an operon encoding a dimethyl sulfoxide reductase. The reference P1 prophage plasmid replication gene belonged to the IncY incompatibility group, whereas that of RCS47 was from an unknown group. The lytic capacity of RCS47 and blaSHV-2 gene transduction, through the lysogenization of RCS47 in the recipient E. coli strains, were not demonstrated. The prevalence of P1-like prophages in various animal and human E. coli strain collections, as determined by the PCR detection of repL, the lytic replication gene, was 12.6%. No differences in the prevalences of these prophages were found between extended-spectrum ?-lactamase (ESBL)-producing and non-ESBL-producing strains (P = 0.69), but this prevalence was lower in phylogroup B2 than in the other phylogroups (P = 0.008), suggesting epistatic interactions between P1 family phages and the genetic background of E. coli strains. P1-like phages are part of the mobile elements that carry antibiotic resistance. The high prevalence of P1-like prophages suggests their role may be underestimated.
Related JoVE Video
Structural and functional partitioning of bread wheat chromosome 3B.
Science
PUBLISHED: 07-19-2014
Show Abstract
Hide Abstract
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
Related JoVE Video
The complete mitochondrial genome of Acanthastrea maxima (Cnidaria, Scleractinia, Lobophylliidae).
Mitochondrial DNA
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Abstract The complete nucleotide sequence of the mitochondrial genome of the scleractinian coral Acanthastrea maxima has been obtained, representing the first sequenced mitogenome of a member of the Lobophylliidae. The mitochondrial genome is 18,278 ?bp in length, the longest sequence among the robust corals sequenced mitogenome to date. The overall GC composition (33.7%) and the gene arrangement are similar to those of the other scleractinian corals, including 13 protein-coding genes, 2 rRNA genes (rnl and rns) and 2 tRNA genes (tRNA-Met and tRNA-Trp). All genes except tRNA-Trp, atp8, cox1, tRNA-Met and rnl are engulfed by a large group I intron in the nad5 gene. A second group I intron of 1077?bp in length is inserted in the cox1 gene and it encodes a putative homing endonuclease. There are four regions of gene overlaps totalling 22?bp and nine intergenic spacer regions for a total of 2220?bp, of which the cox3-cox2 region may correspond to the putative control region.
Related JoVE Video
Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor.
BMC Biol.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044.
Related JoVE Video
Genome Sequence of Luminous Piezophile Photobacterium phosphoreum ANT-2200.
Genome Announc
PUBLISHED: 04-19-2014
Show Abstract
Hide Abstract
Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantially varied lifestyles, including free-living, commensal, pathogenic, symbiotic, and piezophilic. Here, we present the genome sequence of a luminous, piezophilic Photobacterium phosphoreum strain, ANT-2200, isolated from a water column at 2,200 m depth in the Mediterranean Sea. It is the first genomic sequence of the P. phosphoreum group. An analysis of the sequence provides insight into the adaptation of bacteria to the deep-sea habitat.
Related JoVE Video
Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens.
BMC Genomics
PUBLISHED: 03-29-2014
Show Abstract
Hide Abstract
Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens.
Related JoVE Video
Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons.
Nat Commun
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Horizontal transfer (HT) of DNA is an important factor shaping eukaryote evolution. Although several hundreds of eukaryote-to-eukaryote HTs of transposable elements (TEs) have been reported, the vectors underlying these transfers remain elusive. Here, we show that multiple copies of two TEs from the cabbage looper (Trichoplusia ni) transposed in vivo into genomes of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) during caterpillar infection. We further demonstrate that both TEs underwent recent HT between several sympatric moth species (T. ni, Manduca sexta, Helicoverpa spp.) showing different degrees of susceptibility to AcMNPV. Based on two independent population genomics data sets (reaching a total coverage >330,000X), we report a frequency of one moth TE in ~8,500 AcMNPV genomes. Together, our results provide strong support for the role of viruses as vectors of TE HT between animals, and they call for a systematic evaluation of the frequency and impact of virus-mediated HT on the evolution of host genomes.
Related JoVE Video
Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding Yeasts (Saccharomycotina).
Genome Biol Evol
PUBLISHED: 12-10-2013
Show Abstract
Hide Abstract
The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993(T)), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ?13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.
Related JoVE Video
Genome Sequence of Halomonas sp. Strain A3H3, Isolated from Arsenic-Rich Marine Sediments.
Genome Announc
PUBLISHED: 10-12-2013
Show Abstract
Hide Abstract
We report the genome sequence of Halomonas sp. strain A3H3, a bacterium with a high tolerance to arsenite, isolated from multicontaminated sediments of the lEstaque harbor in Marseille, France. The genome is composed of a 5,489,893-bp chromosome and a 157,085-bp plasmid.
Related JoVE Video
Gene amplification and functional diversification of melanocortin 4 receptor at an extremely polymorphic locus controlling sexual maturation in the platyfish.
Genetics
PUBLISHED: 09-27-2013
Show Abstract
Hide Abstract
In two swordtail species of the genus Xiphophorus, the onset of puberty has been shown to be modulated at the P locus by sequence polymorphism and gene copy-number variation affecting the type 4 melanocortin hormone receptor Mc4r. The system works through the interaction of two allelic types, one encoding wild type and the other dominant-negative receptors. We have analyzed the structure and evolution of the P locus in the platyfish Xiphophorus maculatus, where as many as nine alleles of P determining the onset of sexual maturity in males and females, fecundity in females, and adult size in males are located on both the X and Y chromosomes in a region linked to the master sex-determining locus. In this species, mc4r has been amplified to up to 10 copies on both the X and Y chromosomes through recent large serial duplications. Subsequently, mc4r paralogues have diverged considerably into many different subtypes. Certain copies have acquired new untranslated regions through genomic rearrangements, and transposable element insertions and other mutations have accumulated in promoter regions, possibly explaining observed deviations from the classical mc4r transcriptional pattern. In the mc4r-coding sequence, in-frame insertions and deletions as well as nonsense and missense mutations have generated a high diversity of Mc4r-predicted proteins. Most of these variants are expressed in embryos, adults, and/or tumors. Functional receptor characterization demonstrated major divergence in pharmacological behavior for Mc4r receptors encoded by different copies of platyfish mc4r, with differences in constitutive activity as well as binding and stimulation by hormones. The high degree of allelic and copy-number variation observed between individuals can explain the high level of polymorphism for sexual maturation, fecundity, and body size in the platyfish: multiple combinations of Mc4r variants with different biochemical properties might interact to modulate the melanocortin signaling that regulates the hypothalamus-pituitary-gonadal axis.
Related JoVE Video
Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides.
BMC Genomics
PUBLISHED: 09-22-2013
Show Abstract
Hide Abstract
Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas.
Related JoVE Video
Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads.
BMC Genomics
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences.
Related JoVE Video
Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-10-2013
Show Abstract
Hide Abstract
Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeocystis globosa, the blooms of which occur mostly in the coastal zone of the North Atlantic and the North Sea. Here, we report the 459,984-bp-long genome sequence of P. globosa virus strain PgV-16T, encoding 434 proteins and eight tRNAs and, thus, the largest fully sequenced genome to date among viruses infecting algae. Surprisingly, PgV-16T exhibits no phylogenetic affinity with other viruses infecting microalgae (e.g., phycodnaviruses), including those infecting Emiliania huxleyi, another ubiquitous bloom-forming haptophyte. Rather, PgV-16T belongs to an emerging clade (the Megaviridae) clustering the viruses endowed with the largest known genomes, including Megavirus, Mimivirus (both infecting acanthamoeba), and a virus infecting the marine microflagellate grazer Cafeteria roenbergensis. Seventy-five percent of the best matches of PgV-16T-predicted proteins correspond to two viruses [Organic Lake phycodnavirus (OLPV)1 and OLPV2] from a hypersaline lake in Antarctica (Organic Lake), the hosts of which are unknown. As for OLPVs and other Megaviridae, the PgV-16T sequence data revealed the presence of a virophage-like genome. However, no virophage particle was detected in infected P. globosa cultures. The presence of many genes found only in Megaviridae in its genome and the presence of an associated virophage strongly suggest that PgV-16T shares a common ancestry with the largest known dsDNA viruses, the host range of which already encompasses the earliest diverging branches of domain Eukarya.
Related JoVE Video
Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga.
Nature
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.
Related JoVE Video
Three infectious viral species lying in wait in the banana genome.
J. Virol.
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
Plant pararetroviruses integrate serendipitously into their host genomes. The banana genome harbors integrated copies of banana streak virus (BSV) named endogenous BSV (eBSV) that are able to release infectious pararetrovirus. In this investigation, we characterized integrants of three BSV species-Goldfinger (eBSGFV), Imove (eBSImV), and Obino lEwai (eBSOLV)-in the seedy Musa balbisiana Pisang klutuk wulung (PKW) by studying their molecular structure, genomic organization, genomic landscape, and infectious capacity. All eBSVs exhibit extensive viral genome duplications and rearrangements. eBSV segregation analysis on an F1 population of PKW combined with fluorescent in situ hybridization analysis showed that eBSImV, eBSOLV, and eBSGFV are each present at a single locus. eBSOLV and eBSGFV contain two distinct alleles, whereas eBSImV has two structurally identical alleles. Genotyping of both eBSV and viral particles expressed in the progeny demonstrated that only one allele for each species is infectious. The infectious allele of eBSImV could not be identified since the two alleles are identical. Finally, we demonstrate that eBSGFV and eBSOLV are located on chromosome 1 and eBSImV is located on chromosome 2 of the reference Musa genome published recently. The structure and evolution of eBSVs suggest sequential integration into the plant genome, and haplotype divergence analysis confirms that the three loci display differential evolution. Based on our data, we propose a model for BSV integration and eBSV evolution in the Musa balbisiana genome. The mutual benefits of this unique host-pathogen association are also discussed.
Related JoVE Video
Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.
Genome Biol Evol
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.
Related JoVE Video
Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage.
BMC Genomics
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
During host specialization, inactivation of genes whose function is no more required is favored by changes in selective constraints and evolutionary bottlenecks. The Gram positive bacteria Streptococcus agalactiae (also called GBS), responsible for septicemia and meningitis in neonates also emerged during the seventies as a cause of severe epidemics in fish farms. To decipher the genetic basis for the emergence of these highly virulent GBS strains and of their adaptation to fish, we have analyzed the genomic sequence of seven strains isolated from fish and other poikilotherms.
Related JoVE Video
The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogens lifestyle.
BMC Genomics
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
BACKGROUND: Nocardia cyriacigeorgica is recognized as one of the most prevalent etiological agents of human nocardiosis. Human exposure to these Actinobacteria stems from direct contact with contaminated environmental matrices. The full genome sequence of N. cyriacigeorgica strain GUH-2 was studied to infer major trends in its evolution, including the acquisition of novel genetic elements that could explain its ability to thrive in multiple habitats. RESULTS: N. cyriacigeorgica strain GUH-2 genome size is 6.19 Mb-long, 82.7% of its CDS have homologs in at least another actinobacterial genome, and 74.5% of these are found in N. farcinica. Among N. cyriacigeorgica specific CDS, some are likely implicated in niche specialization such as those involved in denitrification and RuBisCO production, and are found in regions of genomic plasticity (RGP). Overall, 22 RGP were identified in this genome, representing 11.4% of its content. Some of these RGP encode a recombinase and IS elements which are indicative of genomic instability. CDS playing part in virulence were identified in this genome such as those involved in mammalian cell entry or encoding a superoxide dismutase. CDS encoding non ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) were identified, with some being likely involved in the synthesis of siderophores and toxins. COG analyses showed this genome to have an organization similar to environmental Actinobacteria. CONCLUSION: N. cyriacigeorgica GUH-2 genome shows features suggesting a diversification from an ancestral saprophytic state. GUH-2 ability at acquiring foreign DNA was found significant and to have led to functional changes likely beneficial for its environmental cycle and opportunistic colonization of a human host.
Related JoVE Video
Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain.
Environ. Microbiol.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.
Related JoVE Video
Complete Genome Sequence of the Piezophilic, Mesophilic, Sulfate-Reducing Bacterium Desulfovibrio hydrothermalis AM13(T.).
Genome Announc
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Desulfovibrio hydrothermalis AM13(T) is a piezophilic, mesophilic, hydrogenotrophic sulfate-reducing bacterium collected from a deep-sea hydrothermal chimney on the East Pacific Rise (2,600 m depth, 13°N). We report the genome sequence of this bacterium, which includes a 3,702,934-bp chromosome and a circular plasmid of 5,328 bp.
Related JoVE Video
Genome Sequence of Xanthomonas campestris pv. campestris Strain Xca5.
Genome Announc
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
An annotated high-quality draft genome sequence for Xanthomonas campestris pv. campestris race 1 strain Xca5 (originally described as X. campestris pv. armoraciae), the causal agent of black rot on Brassicaceae plants, has been determined. This genome sequence is a valuable resource for comparative genomics within the campestris pathovar.
Related JoVE Video
EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking.
Microbiologyopen
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed.
Related JoVE Video
The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Desulfovibrio piezophilus strain C1TLV30(T) is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle.
Related JoVE Video
Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum hydrothermale Lam5(T).
Genome Announc
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Here, we report the draft genome sequence of Desulfotomaculum hydrothermale, a sulfate-reducing, spore-forming bacterium isolated from a Tunisian hot spring. The genome is composed of 2.7 Mb, with a G+C content of 49.48%, and it contains 2,643 protein-coding sequences.
Related JoVE Video
Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis.
Nat. Genet.
PUBLISHED: 01-06-2013
Show Abstract
Hide Abstract
Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5× coverage), 454/Roche (13-18× coverage) and/or Illumina DNA sequencing (45-105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.
Related JoVE Video
A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT (up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite evolutionary strategies, both of which have led to ecological success in their respective environments.
Related JoVE Video
Adaptive selection on bracovirus genomes drives the specialization of Cotesia parasitoid wasps.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The geographic mosaic of coevolution predicts parasite virulence should be locally adapted to the host community. Cotesia parasitoid wasps adapt to local lepidopteran species possibly through their symbiotic bracovirus. The virus, essential for the parasitism success, is at the heart of the complex coevolutionary relationship linking the wasps and their hosts. The large segmented genome contained in the virus particles encodes virulence genes involved in host immune and developmental suppression. Coevolutionary arms race should result in the positive selection of particular beneficial alleles. To understand the global role of bracoviruses in the local adaptation or specialization of parasitoid wasps to their hosts, we studied the molecular evolution of four bracoviruses associated with wasps of the genus Cotesia, including C congregata, C vestalis and new data and annotation on two ecologically differentiated populations of C sesamie, Kitale and Mombasa. Paired orthologs analyses revealed more genes under positive selection when comparing the two C sesamiae bracoviruses belonging to the same species, and more genes under strong evolutionary constraint between species. Furthermore branch-site evolutionary models showed that 17 genes, out of the 54 currently available shared by the four bracoviruses, harboured sites under positive selection including: the histone H4-like, a C-type lectin, two ep1-like, ep2, a viral ankyrin, CrV1, a ben-domain, a Serine-rich, and eight unknown genes. Lastly the phylogenetic analyses of the histone, ep2 and CrV1 genes in different African C sesamiae populations showed that each gene described differently the individual relationships. In particular we found recombination had happened between the ep2 and CrV1 genes, which are localized 37.5 kb apart on the wasp chromosomes. Involved in multidirectional coevolutionary interactions, C sesamiae wasps rely on different bracovirus mediated molecular pathways to overcome local host resistance.
Related JoVE Video
Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-31-2011
Show Abstract
Hide Abstract
The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.
Related JoVE Video
Complete genome sequence of the fish pathogen Flavobacterium branchiophilum.
Appl. Environ. Microbiol.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Members of the genus Flavobacterium occur in a variety of ecological niches and represent an interesting diversity of lifestyles. Flavobacterium branchiophilum is the main causative agent of bacterial gill disease, a severe condition affecting various cultured freshwater fish species worldwide, in particular salmonids in Canada and Japan. We report here the complete genome sequence of strain FL-15 isolated from a diseased sheatfish (Silurus glanis) in Hungary. The analysis of the F. branchiophilum genome revealed putative mechanisms of pathogenicity strikingly different from those of the other, closely related fish pathogen Flavobacterium psychrophilum, including the first cholera-like toxin in a non-Proteobacteria and a wealth of adhesins. The comparison with available genomes of other Flavobacterium species revealed a small genome size, large differences in chromosome organization, and fewer rRNA and tRNA genes, in line with its more fastidious growth. In addition, horizontal gene transfer shaped the evolution of F. branchiophilum, as evidenced by its virulence factors, genomic islands, and CRISPR (clustered regularly interspaced short palindromic repeats) systems. Further functional analysis should help in the understanding of host-pathogen interactions and in the development of rational diagnostic tools and control strategies in fish farms.
Related JoVE Video
Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments.
PLoS Genet.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Fossil records indicate that life appeared in marine environments ?3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that "hydrobacteria" and "terrabacteria" might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land.
Related JoVE Video
Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean.
Environ. Microbiol.
PUBLISHED: 09-06-2011
Show Abstract
Hide Abstract
Bacteroidetes are widespread in marine systems where they play a crucial role in organic matter degradation. Whole genome analysis of several strains has revealed a broad glycolytic and proteolytic potential. In this study, we used a targeted metagenomic approach to investigate the degradation capabilities of distinct Bacteroidetes clades from two contrasting regions of the North Atlantic Ocean, the Polar Biome (BPLR) and the North Atlantic Subtropical (NAST). We present here the analysis of 76 Bacteroidetes fosmids, of which 28 encode the 16S rRNA gene as phylogenetic marker, and their comparison to complete Bacteroidetes genomes. Almost all of the 16S rRNA harbouring fosmids belonged to clades that we previously identified in BPLR and NAST. The majority of sequenced fosmids could be assigned to Bacteroidetes affiliated with the class Flavobacteria. We also present novel genomic information on the classes Cytophagia and Sphingobacteria, suggesting a capability of the latter for attachment to algal surfaces. In our fosmid set we identified a larger potential for polysaccharide degradation and cell surface attachment in the phytoplankton-rich BPLR. Particularly, two flavobacterial fosmids, one affiliated with the genus Polaribacter, showed a whole armoury of enzymes that likely function in degradation of sulfated polysaccharides known to be major constituents of phytoplankton cell walls. Genes involved in protein and peptidoglycan degradation, although present in both fosmid sets, seemed to have a slight preponderance in NAST. This study provides support for the hypothesis of a distinct specialization among marine Bacteroidetes for the degradation of certain types of polymers.
Related JoVE Video
Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites.
J. Bacteriol.
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
Streptomyces cattleya, a producer of the antibiotics thienamycin and cephamycin C, is one of the rare bacteria known to synthesize fluorinated metabolites. The genome consists of two linear replicons. The genes involved in fluorine metabolism and in the biosynthesis of the antibiotic thienamycin were mapped on both replicons.
Related JoVE Video
Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1.
J. Bacteriol.
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
Hyphomicrobium sp. strain MC1 is an aerobic methylotroph originally isolated from industrial sewage. This prosthecate bacterium was the first strain reported to grow with chloromethane as the sole carbon and energy source. Its genome, consisting of a single 4.76-Mb chromosome, is the first for a chloromethane-degrading bacterium to be formally reported.
Related JoVE Video
Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes.
BMC Genomics
PUBLISHED: 07-29-2011
Show Abstract
Hide Abstract
Legionella pneumophila is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires disease. Despite the abundance of dozens of Legionella species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely L. pneumophila Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis.
Related JoVE Video
The Medicago genome provides insight into the evolution of rhizobial symbioses.
Nevin D Young, Frédéric Debellé, Giles E D Oldroyd, Rene Geurts, Steven B Cannon, Michael K Udvardi, Vagner A Benedito, Klaus F X Mayer, Jérôme Gouzy, Heiko Schoof, Yves Van de Peer, Sebastian Proost, Douglas R Cook, Blake C Meyers, Manuel Spannagl, Foo Cheung, Stéphane De Mita, Vivek Krishnakumar, Heidrun Gundlach, Shiguo Zhou, Joann Mudge, Arvind K Bharti, Jeremy D Murray, Marina A Naoumkina, Benjamin Rosen, Kevin A T Silverstein, Haibao Tang, Stephane Rombauts, Patrick X Zhao, Peng Zhou, Valérie Barbe, Philippe Bardou, Michael Bechner, Arnaud Bellec, Anne Berger, Hélène Berges, Shelby Bidwell, Ton Bisseling, Nathalie Choisne, Arnaud Couloux, Roxanne Denny, Shweta Deshpande, Xinbin Dai, Jeff J Doyle, Anne-Marie Dudez, Andrew D Farmer, Stéphanie Fouteau, Carolien Franken, Chrystel Gibelin, John Gish, Steven Goldstein, Alvaro J González, Pamela J Green, Asis Hallab, Marijke Hartog, Axin Hua, Sean J Humphray, Dong-Hoon Jeong, Yi Jing, Anika Jöcker, Steve M Kenton, Dong-Jin Kim, Kathrin Klee, Hongshing Lai, Chunting Lang, Shaoping Lin, Simone L Macmil, Ghislaine Magdelenat, Lucy Matthews, Jamison McCorrison, Erin L Monaghan, Jeong-Hwan Mun, Fares Z Najar, Christine Nicholson, Céline Noirot, Majesta O'Bleness, Charles R Paule, Julie Poulain, Florent Prion, Baifang Qin, Chunmei Qu, Ernest F Retzel, Claire Riddle, Erika Sallet, Sylvie Samain, Nicolas Samson, Iryna Sanders, Olivier Saurat, Claude Scarpelli, Thomas Schiex, Béatrice Ségurens, Andrew J Severin, D Janine Sherrier, Ruihua Shi, Sarah Sims, Susan R Singer, Senjuti Sinharoy, Lieven Sterck, Agnès Viollet, Bing-Bing Wang, Keqin Wang, Mingyi Wang, Xiaohong Wang, Jens Warfsmann, Jean Weissenbach, Doug D White, Jim D White, Graham B Wiley, Patrick Wincker, Yanbo Xing, Limei Yang, Ziyun Yao, Fu Ying, Jixian Zhai, Liping Zhou, Antoine Zuber, Jean Dénarié, Richard A Dixon, Gregory D May, David C Schwartz, Jane Rogers, Francis Quetier, Christopher D Town, Bruce A Roe.
Nature
PUBLISHED: 06-13-2011
Show Abstract
Hide Abstract
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ?94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfas genomic toolbox.
Related JoVE Video
The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment.
PLoS ONE
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
Ramlibacter tataouinensis TTB310(T) (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical "cyst-like" cells ("cyst-cyst" division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310s underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed.
Related JoVE Video
Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut.
FEMS Microbiol. Ecol.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
Ruminococcin C (RumC) is a trypsin-dependent bacteriocin produced by Ruminococcus gnavus E1, a gram-positive strict anaerobic strain isolated from human feces. It consists of at least three similar peptides active against Clostridium perfringens. In this article, a 15-kb region from R. gnavus E1 chromosome, containing the biosynthetic gene cluster of RumC was characterized. It harbored 17 open reading frames (called rum(c) genes) with predicted functions in bacteriocin biosynthesis and post-translational modification, signal transduction regulation, and immunity. An unusual feature of the locus is the presence of five genes encoding highly homologous, but nonidentical RumC precursors. The transcription levels of the rum(c) genes were quantified. The rumC genes were found to be highly expressed in vivo, when R. gnavus E1 colonized the digestive tract of mono-contaminated rats, whereas the amount of corresponding transcripts was below detection level when it grew in liquid culture medium. Moreover, the rumC-like genes were disseminated among 10 strains (R. gnavus or related species) previously isolated from human fecal samples and selected for their capability to produce a trypsin-dependant anti-C. perfringens compound. All harbored at least a rumC1-like copy, four exhibited rumC1-5 genes identical to those of strain E1.
Related JoVE Video
PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma.
PLoS Negl Trop Dis
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
Rhinoscleroma is a chronic granulomatous infection of the upper airways caused by the bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. The disease is endemic in tropical and subtropical areas, but its diagnosis remains difficult. As a consequence, and despite available antibiotherapy, some patients evolve advanced stages that can lead to disfiguration, severe respiratory impairment and death by anoxia. Because identification of the etiologic agent is crucial for the definitive diagnosis of the disease, the aim of this study was to develop two simple PCR assays. We took advantage of the fact that all Klebsiella pneumoniae subsp. rhinoscleromatis isolates are (i) of capsular serotype K3; and (ii) belong to a single clone with diagnostic single nucleotide polymorphisms (SNP). The complete sequence of the genomic region comprising the capsular polysaccharide synthesis (cps) gene cluster was determined. Putative functions of the 21 genes identified were consistent with the structure of the K3 antigen. The K3-specific sequence of gene Kr11509 (wzy) was exploited to set up a PCR test, which was positive for 40 K3 strains but negative when assayed on the 76 other Klebsiella capsular types. Further, to discriminate Klebsiella pneumoniae subsp. rhinoscleromatis from other K3 Klebsiella strains, a specific PCR assay was developed based on diagnostic SNPs in the phosphate porin gene phoE. This work provides rapid and simple molecular tools to confirm the diagnostic of rhinoscleroma, which should improve patient care as well as knowledge on the prevalence and epidemiology of rhinoscleroma.
Related JoVE Video
Complete genome sequence of a beneficial plant root-associated bacterium, Pseudomonas brassicacearum.
J. Bacteriol.
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
To shed light on the genetic equipment of the beneficial plant-associated bacterium Pseudomonas brassicacearum, we sequenced the whole genome of the strain NFM421. Its genome consists of one chromosome equipped with a repertoire of factors beneficial for plant growth. In addition, a complete type III secretion system and two complete type VI secretion systems were identified. We report here the first genome sequence of this species.
Related JoVE Video
Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles.
PLoS ONE
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.
Related JoVE Video
Hydrogen is an energy source for hydrothermal vent symbioses.
Nature
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
Related JoVE Video
Mycoplasma mycoides, from "mycoides Small Colony" to "capri". A microevolutionary perspective.
BMC Genomics
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
The Mycoplasma mycoides cluster consists of five species or subspecies that are ruminant pathogens. One subspecies, Mycoplasma mycoides subspecies mycoides Small Colony (MmmSC), is the causative agent of contagious bovine pleuropneumonia. Its very close relative, Mycoplasma mycoides subsp. capri (Mmc), is a more ubiquitous pathogen in small ruminants causing mastitis, arthritis, keratitis, pneumonia and septicaemia and is also found as saprophyte in the ear canal. To understand the genetics underlying these phenotypic differences, we compared the MmmSC PG1 type strain genome, which was already available, with the genome of an Mmc field strain (95010) that was sequenced in this study. We also compared the 95010 genome with the recently published genome of another Mmc strain (GM12) to evaluate Mmc strain diversity.
Related JoVE Video
Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads.
BMC Evol. Biol.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue.
Related JoVE Video
The arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese.
PLoS ONE
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
Arthrobacter arilaitensis is one of the major bacterial species found at the surface of cheeses, especially in smear-ripened cheeses, where it contributes to the typical colour, flavour and texture properties of the final product. The A. arilaitensis Re117 genome is composed of a 3,859,257 bp chromosome and two plasmids of 50,407 and 8,528 bp. The chromosome shares large regions of synteny with the chromosomes of three environmental Arthrobacter strains for which genome sequences are available: A. aurescens TC1, A. chlorophenolicus A6 and Arthrobacter sp. FB24. In contrast however, 4.92% of the A. arilaitensis chromosome is composed of ISs elements, a portion that is at least 15 fold higher than for the other Arthrobacter strains. Comparative genomic analyses reveal an extensive loss of genes associated with catabolic activities, presumably as a result of adaptation to the properties of the cheese surface habitat. Like the environmental Arthrobacter strains, A. arilaitensis Re117 is well-equipped with enzymes required for the catabolism of major carbon substrates present at cheese surfaces such as fatty acids, amino acids and lactic acid. However, A. arilaitensis has several specificities which seem to be linked to its adaptation to its particular niche. These include the ability to catabolize D-galactonate, a high number of glycine betaine and related osmolyte transporters, two siderophore biosynthesis gene clusters and a high number of Fe(3+)/siderophore transport systems. In model cheese experiments, addition of small amounts of iron strongly stimulated the growth of A. arilaitensis, indicating that cheese is a highly iron-restricted medium. We suggest that there is a strong selective pressure at the surface of cheese for strains with efficient iron acquisition and salt-tolerance systems together with abilities to catabolize substrates such as lactic acid, lipids and amino acids.
Related JoVE Video
Complete genome sequence of Crohns disease-associated adherent-invasive E. coli strain LF82.
PLoS ONE
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Ileal lesions of Crohns disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells and macrophages.
Related JoVE Video
Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence.
BMC Genomics
PUBLISHED: 05-17-2010
Show Abstract
Hide Abstract
Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed.
Related JoVE Video
The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications.
PLoS ONE
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
Propionibacterium freudenreichii is essential as a ripening culture in Swiss-type cheeses and is also considered for its probiotic use. This species exhibits slow growth, low nutritional requirements, and hardiness in many habitats. It belongs to the taxonomic group of dairy propionibacteria, in contrast to the cutaneous species P. acnes. The genome of the type strain, P. freudenreichii subsp. shermanii CIRM-BIA1 (CIP 103027(T)), was sequenced with an 11-fold coverage.
Related JoVE Video
Small variable segments constitute a major type of diversity of bacterial genomes at the species level.
Genome Biol.
PUBLISHED: 03-15-2010
Show Abstract
Hide Abstract
Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity.
Related JoVE Video
Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence.
BMC Genomics
PUBLISHED: 02-27-2010
Show Abstract
Hide Abstract
The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats.
Related JoVE Video
Fine-scale evolution: genomic, phenotypic and ecological differentiation in two coexisting Salinibacter ruber strains.
ISME J
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
Genomic and metagenomic data indicate a high degree of genomic variation within microbial populations, although the ecological and evolutive meaning of this microdiversity remains unknown. Microevolution analyses, including genomic and experimental approaches, are so far very scarce for non-pathogenic bacteria. In this study, we compare the genomes, metabolomes and selected ecological traits of the strains M8 and M31 of the hyperhalophilic bacterium Salinibacter ruber that contain ribosomal RNA (rRNA) gene and intergenic regions that are identical in sequence and were simultaneously isolated from a Mediterranean solar saltern. Comparative analyses indicate that S. ruber genomes present a mosaic structure with conserved and hypervariable regions (HVRs). The HVRs or genomic islands, are enriched in transposases, genes related to surface properties, strain-specific genes and highly divergent orthologous. However, the many indels outside the HVRs indicate that genome plasticity extends beyond them. Overall, 10% of the genes encoded in the M8 genome are absent from M31 and could stem from recent acquisitions. S. ruber genomes also harbor 34 genes located outside HVRs that are transcribed during standard growth and probably derive from lateral gene transfers with Archaea preceding the M8/M31 divergence. Metabolomic analyses, phage susceptibility and competition experiments indicate that these genomic differences cannot be considered neutral from an ecological perspective. The results point to the avoidance of competition by micro-niche adaptation and response to viral predation as putative major forces that drive microevolution within these Salinibacter strains. In addition, this work highlights the extent of bacterial functional diversity and environmental adaptation, beyond the resolution of the 16S rRNA and internal transcribed spacers regions.
Related JoVE Video
Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity.
BMC Genomics
PUBLISHED: 02-02-2010
Show Abstract
Hide Abstract
While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study.
Related JoVE Video
Structure, function, and evolution of the Thiomonas spp. genome.
PLoS Genet.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.
Related JoVE Video
Genome sequences of Escherichia coli B strains REL606 and BL21(DE3).
J. Mol. Biol.
PUBLISHED: 09-21-2009
Show Abstract
Hide Abstract
Escherichia coli K-12 and B have been the subjects of classical experiments from which much of our understanding of molecular genetics has emerged. We present here complete genome sequences of two E. coli B strains, REL606, used in a long-term evolution experiment, and BL21(DE3), widely used to express recombinant proteins. The two genomes differ in length by 72,304 bp and have 426 single base pair differences, a seemingly large difference for laboratory strains having a common ancestor within the last 67 years. Transpositions by IS1 and IS150 have occurred in both lineages. Integration of the DE3 prophage in BL21(DE3) apparently displaced a defective prophage in the lambda attachment site of B. As might have been anticipated from the many genetic and biochemical experiments comparing B and K-12 over the years, the B genomes are similar in size and organization to the genome of E. coli K-12 MG1655 and have >99% sequence identity over approximately 92% of their genomes. E. coli B and K-12 differ considerably in distribution of IS elements and in location and composition of larger mobile elements. An unexpected difference is the absence of a large cluster of flagella genes in B, due to a 41 kbp IS1-mediated deletion. Gene clusters that specify the LPS core, O antigen, and restriction enzymes differ substantially, presumably because of horizontal transfer. Comparative analysis of 32 independently isolated E. coli and Shigella genomes, both commensals and pathogenic strains, identifies a minimal set of genes in common plus many strain-specific genes that constitute a large E. coli pan-genome.
Related JoVE Video
Molecular analysis of the sex chromosomes of the platyfish Xiphophorus maculatus: Towards the identification of a new type of master sexual regulator in vertebrates.
Integr Zool
PUBLISHED: 09-01-2009
Show Abstract
Hide Abstract
In contrast to mammals and birds, fish display an amazing diversity of genetic sex determination systems, with frequent changes during evolution possibly associated with the emergence of new sex chromosomes and sex-determining genes. To better understand the molecular and evolutionary mechanisms driving this diversity, several fish models are studied in parallel. Besides the medaka (Oryzias latipes Temminck and Schlegel, 1846) for which the master sex-determination gene has been identified, one of the most advanced models for studying sex determination is the Southern platyfish (Xiphophorus maculatus, Günther 1966). Xiphophorus maculatus belongs to the Poeciliids, a family of live-bearing freshwater fish, including platyfish, swordtails and guppies that perfectly illustrates the diversity of genetic sex-determination mechanisms observed in teleosts. For X. maculatus, bacterial artificial chromosome contigs covering the sex-determination region of the X and Y sex chromosomes have been constructed. Initial molecular analysis demonstrated that the sex-determination region is very unstable and frequently undergoes duplications, deletions, inversions and other rearrangements. Eleven gene candidates linked to the master sex-determining gene have been identified, some of them corresponding to pseudogenes. All putative genes are present on both the X and the Y chromosomes, suggesting a poor degree of differentiation and a young evolutionary age for platyfish sex chromosomes. When compared with other fish and tetrapod genomes, syntenies were detected only with autosomes. This observation supports an independent origin of sex chromosomes, not only in different vertebrate lineages but also between different fish species.
Related JoVE Video
The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae.
BMC Genomics
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences.
Related JoVE Video
Comparative genomics of protoploid Saccharomycetaceae.
Genome Res.
PUBLISHED: 06-12-2009
Show Abstract
Hide Abstract
Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.
Related JoVE Video
Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas.
PLoS Genet.
PUBLISHED: 05-19-2009
Show Abstract
Hide Abstract
Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden-Meyerhoff-Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes.
Related JoVE Video
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later.
Microbiology (Reading, Engl.)
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.
Related JoVE Video
Occurrence, plasticity, and evolution of the vpma gene family, a genetic system devoted to high-frequency surface variation in Mycoplasma agalactiae.
J. Bacteriol.
PUBLISHED: 04-17-2009
Show Abstract
Hide Abstract
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits a very versatile surface architecture by switching multiple, related lipoproteins (Vpmas) on and off. In the type strain, PG2, Vpma phase variation is generated by a cluster of six vpma genes that undergo frequent DNA rearrangements via site-specific recombination. To further comprehend the degree of diversity that can be generated at the M. agalactiae surface, the vpma gene repertoire of a field strain, 5632, was analyzed and shown to contain an extended repertoire of 23 vpma genes distributed between two loci located 250 kbp apart. Loci I and II include 16 and 7 vpma genes, respectively, with all vpma genes of locus II being duplicated at locus I. Several Vpmas displayed a chimeric structure suggestive of homologous recombination, and a global proteomic analysis further indicated that at least 13 of the 16 Vpmas can be expressed by the 5632 strain. Because a single promoter is present in each vpma locus, concomitant Vpma expression can occur in a strain with duplicated loci. Consequently, the number of possible surface combinations is much higher for strain 5632 than for the type strain. Finally, our data suggested that insertion sequences are likely to be involved in 5632 vpma locus duplication at a remote chromosomal position. The role of such mobile genetic elements in chromosomal shuffling of genes encoding major surface components may have important evolutionary and epidemiological consequences for pathogens, such as mycoplasmas, that have a reduced genome and no cell wall.
Related JoVE Video
A module located at a chromosomal integration hot spot is responsible for the multidrug resistance of a reference strain from Escherichia coli clonal group A.
Antimicrob. Agents Chemother.
PUBLISHED: 04-13-2009
Show Abstract
Hide Abstract
Escherichia coli clonal group A (CGA) commonly exhibits a distinctive multidrug antimicrobial resistance phenotype-i.e., resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and trimethoprim (ACSSuTTp)-and has accounted for up to 50% of trimethoprim-sulfamethoxazole-resistant E. coli urinary tract infections in some locales. Annotation of the whole-genome sequencing of UMN026, a reference CGA strain, clarified the genetic basis for this strains ACSSuTTp antimicrobial resistance phenotype. Most of the responsible genes were clustered in a unique 23-kbp chromosomal region, designated the genomic resistance module (GRM), which occurred within a 105-kbp genomic island situated at the leuX tRNA. The GRM is characterized by numerous remnants of mobilization and rearrangement events suggesting multiple horizontal transfers. Additionally, comparative genomic analysis of the leuX tRNA genomic island in 14 sequenced E. coli genomes showed that this region is a hot spot of integration, with the presence/absence of specific subregions being uncorrelated with either the phylogenetic group or the pathotype. Our data illustrate the importance of whole-genome sequencing in the detection of genetic elements involved in antimicrobial resistance. Additionally, this is the first documentation of the bla(TEM) and dhfrVII genes in a chromosomal location in E. coli strains.
Related JoVE Video
The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model.
Infect. Immun.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
A new Escherichia coli virulent clonal group, O45:K1, belonging to the highly virulent subgroup B2(1) was recently identified in France, where it accounts for one-third of E. coli neonatal meningitis cases. Here we describe the sequence, epidemiology and function of the large plasmid harbored by strain S88, which is representative of the O45:K1 clonal group. Plasmid pS88 is 133,853 bp long and contains 144 protein-coding genes. It harbors three different iron uptake systems (aerobactin, salmochelin, and the sitABCD genes) and other putative virulence genes (iss, etsABC, ompT(P), and hlyF). The pS88 sequence is composed of several gene blocks homologous to avian pathogenic E. coli plasmids pAPEC-O2-ColV and pAPEC-O1-ColBM. PCR amplification of 11 open reading frames scattered throughout the plasmid was used to investigate the distribution of pS88 and showed that a pS88-like plasmid is present in other meningitis clonal groups such as O18:K1, O1:K1, and O83:K1. A pS88-like plasmid was also found in avian pathogenic strains and human urosepsis strains belonging to subgroup B2(1). A variant of S88 cured of its plasmid displayed a marked loss of virulence relative to the wild-type strain in a neonatal rat model, with bacteremia more than 2 log CFU/ml lower. The salmochelin siderophore, a known meningovirulence factor, could not alone explain the plasmids contribution to virulence, as a salmochelin mutant displayed only a minor fall in bacteremia (0.9 log CFU/ml). Thus, pS88 is a major virulence determinant related to avian pathogenic plasmids that has spread not only through meningitis clonal groups but also human urosepsis and avian pathogenic strains.
Related JoVE Video
Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti.
PLoS Genet.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase) were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.
Related JoVE Video
Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.
PLoS ONE
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared.
Related JoVE Video
Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.
PLoS Genet.
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genomes long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.
Related JoVE Video
Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels.
BMC Genomics
Show Abstract
Hide Abstract
Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity.
Related JoVE Video
Evolutionary history of contagious bovine pleuropneumonia using next generation sequencing of Mycoplasma mycoides Subsp. mycoides "Small Colony".
PLoS ONE
Show Abstract
Hide Abstract
Mycoplasma mycoides subsp. mycoides "Small Colony" (MmmSC) is responsible for contagious bovine pleuropneumonia (CBPP) in bovidae, a notifiable disease to the World Organization for Animal Health (OIE). Although its origin is not documented, the disease was known in Europe in 1773. It reached nearly world-wide distribution in the 19(th) century through the cattle trade and was eradicated from most continents by stamping-out policies. During the 20(th) century it persisted in Africa, and it reappeared sporadically in Southern Europe. Yet, classical epidemiology studies failed to explain the re-occurrence of the disease in Europe in the 1990s. The objectives of this study were to obtain a precise phylogeny of this pathogen, reconstruct its evolutionary history, estimate the date of its emergence, and determine the origin of the most recent European outbreaks. A large-scale genomic approach based on next-generation sequencing technologies was applied to construct a robust phylogeny of this extremely monomorphic pathogen by using 20 representative strains of various geographical origins. Sixty two polymorphic genes of the MmmSC core genome were selected, representing 83601 bp in total and resulting in 139 SNPs within the 20 strains. A robust phylogeny was obtained that identified a lineage specific to European strains; African strains were scattered in various branches. Bayesian analysis allowed dating the most recent common ancestor for MmmSC around 1700. The strains circulating in Sub-Saharan Africa today, however, were shown to descend from a strain that existed around 1810. MmmSC emerged recently, about 300 years ago, and was most probably exported from Europe to other continents, including Africa, during the 19(th) century. Its diversity is now greater in Africa, where CBPP is enzootic, than in Europe, where outbreaks occurred sporadically until 1999 and where CBPP may now be considered eradicated unless MmmSC remains undetected.
Related JoVE Video
The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle.
Mol. Biol. Evol.
Show Abstract
Hide Abstract
Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of foreign languages.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.