JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.
Gene
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-? superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.
Related JoVE Video
Physiological copper exposure in Jurkat cells induces changes in the expression of genes encoding cholesterol biosynthesis proteins.
Biometals
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Copper is an essential micronutrient that functions as an enzymatic cofactor in a wide range of cellular processes. Although adequate Cu levels are essential for normal metabolism, excess Cu can be toxic to cells. Cellular responses to copper deficiency and overload involve changes in the expression of genes directly and indirectly involved in copper metabolism. However little is known on the effect of physiological copper concentration on gene expression changes. In the current study we aimed to establish whether the expression of genes encoding enzymes related to cholesterol (hmgcs1, hmgcr, fdft) and fatty acid biosynthesis and LDL receptor can be induced by an iso-physiological copper concentration. The iso-physiological copper concentration was determined as the bioavailable plasmatic copper in a healthy adult population. In doing so, two blood cell lines (Jurkat and THP-1) were exposed for 6 or 24 h to iso- or supraphysiological copper concentrations. Our results indicated that in cells exposed to an iso-physiological copper concentration the early induction of genes involved in lipid metabolism was not mediated by copper itself but by the modification of the cellular redox status. Thus our results contributed to understand the involvement of copper in the regulation of cholesterol metabolism under physiological conditions.
Related JoVE Video
Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.
Biometals
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks.
Related JoVE Video
Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure.
Biometals
PUBLISHED: 03-08-2010
Show Abstract
Hide Abstract
In this work we investigated the adaptive response of E. faecalis to Cu and the role of CopY, a Cu-dependent repressor, in the regulation of Cu metabolism. In doing so, we examined the whole-genome transcriptional response of E. faecalis wild-type (WT) and a ?copY strain exposed to non-toxic Cu excess. The results indicated that after Cu exposure, most of the genes that displayed a significant change in their expression levels in the WT strain (135 of the 145 up-regulated genes and 115 of the 142 down-regulated genes) were also differentially expressed in the E. faecalis ?copY strain. This extensive overlap in the transcriptional response, suggested that additional transcription factors mediate the response of E. faecalis to Cu. As a first step to analyze this possibility, we selected among the up-regulated genes five genes encoding putative transcriptional regulators and determined their expression levels at different times after Cu exposure. The temporal expression of these regulators was different from that of copY, which reached its maximum at the earliest time measured. Nevertheless, transcription elongation factor GreA, and members of Rrf2, Cro/CI and SorC/DeoR transcription factor families were induced shortly after Cu exposure, suggesting that these proteins are able to complement the role of CopY in the regulatory network activated by Cu. To our knowledge, this is the first report on the global transcriptional response to Cu in a member of this taxonomic group.
Related JoVE Video
Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
As a result of copper essentiality for life, plants and most other organisms have developed a conserved and complex network of proteins to handling Cu in order to prevent its deficit and to avoid its potentially toxic effects. To better understand regulation of Cu homeostasis in plants, we use adult plant of Arabidopsis thaliana to provide an integrated view of how Cu status affects the expression of genes involved in cellular Cu homoeostasis. In doing so, we use real-time RT-PCR to compare shoot and roots transcriptional responses to Cu. We measure changes in the abundance of transcripts encoding transporters, chaperones and P-type ATPases and correlated those changes with variation of Cu content in both tissues. Our results indicated that in both tissues transcript levels of COPT2, 4, and ZIP2 transporters and CCH chaperone were significantly down-regulated comparing to controls plants in response to Cu excess. In contrast, Cu chaperones ATX1, CCS, COX17-1 including two putative mitochondrial chaperones (At3g08950; At1g02410) were up-regulated under similar conditions. Regarding P-type ATPases, a reduction of HMA1, PAA1, PAA2, and RAN1 transcript levels in shoot after Cu exposure was observed, while HMA5 transcripts increased exclusively in roots. In plants growing under Cu-deficient conditions, COPT2, ZIP2, HMA1, andPAA2, were significantly up-regulated in shoots. Thus, our results indicated a common transcriptional regulation pattern of transporters and chaperone components, in particular transcriptional changes of COPT2, ZIP2, and CCH showed an inverse relation with Cu content suggesting that these proteins are required to avoid excess and deficit of Cu.
Related JoVE Video
Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE).
BMC Genomics
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury.
Related JoVE Video
Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality.
BMC Genomics
PUBLISHED: 09-10-2009
Show Abstract
Hide Abstract
Cold storage is used to inhibit peach fruit ripening during shipment to distant markets. However, this cold storage can negatively affect the quality of the fruit when it is ripened, resulting in disorders such as wooliness, browning or leathering. In order to understand the individual and combined biological effects that factors such as cold storage and ripening have on the fruit and fruit quality, we have taken a comparative EST transcript profiling approach to identify genes that are differentially expressed in response to these factors.
Related JoVE Video
Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis.
BMC Biol.
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis.
Related JoVE Video
Overexpression of amyloid precursor protein increases copper content in HEK293 cells.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-06-2009
Show Abstract
Hide Abstract
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimers disease. However, its physiological function remains elusive. Cu(2+) binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu(2+) reduction and (64)Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu(2+) reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu(2+) ions. Moreover, wild-type cells exposed to both Cu(2+) ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu(2+) reductase activity and increased (64)Cu uptake. We conclude that Cu(2+) reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.
Related JoVE Video
Transcriptomic response of Enterococcus faecalis to iron excess.
Biometals
Show Abstract
Hide Abstract
Iron is an essential nutrient for sustaining bacterial growth; however, little is known about the molecular mechanisms that govern gene expression during the homeostatic response to iron availability. In this study we analyzed the global transcriptional response of Enterococcus faecalis to a non-toxic iron excess in order to identify the set of genes that respond to an increment of intracellular iron. Our results showed an up-regulation of transcriptional regulators of the Fur family (PerR and ZurR), the cation efflux family (CzcD) and ferredoxin, while proton-dependent Mn/Fe (MntH) transporters and the universal stress protein (UspA) were down-regulated. This indicated that E. faecalis was able to activate a transcriptional response while growing in the presence of an excess of non-toxic iron, assuring the maintenance of iron homeostasis. Gene expression analysis of E. faecalis treated with H(2)O(2) indicated that a fraction of the transcriptional changes induced by iron appears to be mediated by oxidative stress. A comparison of our transcriptomic data with a recently reported set of differentially expressed genes in E. faecalis grown in blood, revealed an important fraction of common genes. In particular, genes associated to oxidative stress were up-regulated in both conditions, while genes encoding the iron uptake system (feo and ycl operons) were up-regulated when cells were grown in blood. This suggested that blood cultures mimic an iron deficit, and was corroborated by measuring feo and ycl expression in E. faecalis treated with the iron chelating agent 2,2-dipyridil. In summary, our group identified an adaptive transcriptional mechanism in response to metal ion stress in E. faecalis, providing a foundation for future in-depth functional studies of the iron-activated regulatory network.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.