JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Novel method to characterize immune cells from human prostate tissue.
Prostate
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Benign prostatic hyperplasia (BPH) is the most common benign adenoma and prostate cancer is the most frequent malignancy in men over 50 years of age in the Western world, where it remains a significant health problem. Prostate lesions are known to contain immune cells, which may contribute to the immune control of tumor progression. However, due to their low numbers and restricted access to necessary material it is difficult to isolate immune cells from prostate tissue to characterize their immunological features.
Related JoVE Video
Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data.
BMC Genomics
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
ChIP-Seq is widely used to detect genomic segments bound by transcription factors (TF), either directly at DNA binding sites (BSs) or indirectly via other proteins. Currently, there are many software tools implementing different approaches to identify TFBSs within ChIP-Seq peaks. However, their use for the interpretation of ChIP-Seq data is usually complicated by the absence of direct experimental verification, making it difficult both to set a threshold to avoid recognition of too many false-positive BSs, and to compare the actual performance of different models.
Related JoVE Video
Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.
Front Psychol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.
Related JoVE Video
The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning.
J. Biomol. Struct. Dyn.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database ( http://w3lamc.umbr.cas.cz/PlantSat/ ) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays - regular, partially regular (partial), and flexible - were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios.
Related JoVE Video
From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites.
J Bioinform Comput Biol
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) became a method of choice to locate DNA segments bound by different regulatory proteins. ChIP-Seq produces extremely valuable information to study transcriptional regulation. The wet-lab workflow is often supported by downstream computational analysis including construction of models of nucleotide sequences of transcription factor binding sites in DNA, which can be used to detect binding sites in ChIP-Seq data at a single base pair resolution. The most popular TFBS model is represented by positional weight matrix (PWM) with statistically independent positional weights of nucleotides in different columns; such PWMs are constructed from a gapless multiple local alignment of sequences containing experimentally identified TFBSs. Modern high-throughput techniques, including ChIP-Seq, provide enough data for careful training of advanced models containing more parameters than PWM. Yet, many suggested multiparametric models often provide only incremental improvement of TFBS recognition quality comparing to traditional PWMs trained on ChIP-Seq data. We present a novel computational tool, diChIPMunk, that constructs TFBS models as optimal dinucleotide PWMs, thus accounting for correlations between nucleotides neighboring in input sequences. diChIPMunk utilizes many advantages of ChIPMunk, its ancestor algorithm, accounting for ChIP-Seq base coverage profiles ("peak shape") and using the effective subsampling-based core procedure which allows processing of large datasets. We demonstrate that diPWMs constructed by diChIPMunk outperform traditional PWMs constructed by ChIPMunk from the same ChIP-Seq data. Software website: http://autosome.ru/dichipmunk/
Related JoVE Video
Dynamics of the major histocompatibility complex class I processing and presentation pathway in the course of malaria parasite development in human hepatocytes: implications for vaccine development.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver.
Related JoVE Video
In silico prediction of transcriptional factor-binding sites.
Methods Mol. Biol.
PUBLISHED: 07-23-2011
Show Abstract
Hide Abstract
The recognition of transcription factor binding sites (TFBSs) is the first step on the way to deciphering the DNA regulatory code. A large variety of computational approaches and corresponding in silico tools for TFBS recognition are available, each having their own advantages and shortcomings. This chapter provides a brief tutorial to assist end users in the application of these tools for functional characterization of genes.
Related JoVE Video
B cell receptor triggering sensitizes human B cells to TRAIL-induced apoptosis.
J. Leukoc. Biol.
PUBLISHED: 08-13-2010
Show Abstract
Hide Abstract
TRAIL is known to cause death in tumor cells, but physiological regulation of its activity remains poorly characterized. We demonstrate that BCR triggering sensitizes transformed centroblast-like BL cells and peripheral blood memory B cells to TRAIL-mediated apoptosis. The sensitization correlated with surface down-regulation and intracellular retention of TRAIL-R4, along with changes in the expression of several Bcl-2 protein family members. Although enhancing FAS-mediated cell death, CD40 activation protected B cells from TRAIL-induced apoptosis. Combination of Ig cross-linking with CD40 ligation did not prevent TRAIL-R4 down-regulation but induced changes in the mitochondria-regulated pathway of apoptosis that are known to be associated with resistance to TRAIL. Human CD5(+) B cells, presumably stimulated by reactivity to self without immunological help, exhibited very high ex vivo sensitivity to TRAIL. Our results define the first B-lymphocyte-specific physiological signal that increases cellular sensitivity to TRAIL. This may be important for our understanding of TRAIL involvement in the control of B cell responses and aid in designing TRAIL-based therapies for B cell lymphomas.
Related JoVE Video
Cytotoxic T-lymphocytes secrete soluble factors that induce caspase-mediated apoptosis in glioblastoma cell lines.
J. Neuroimmunol.
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
We have previously shown that factors secreted by activated CTLs induce apoptosis in a panel of glioblastoma lines. In this study, we analyzed the expression of death receptors, activation of caspases and mRNA expression of 96 apoptotic genes in glioblastoma lines either sensitive or resistant to supernatant of activated CTLs. Our results indicate that exposure to supernatant triggers several pathways of caspase activation in glioblastoma lines involved in the initiation of both extrinsic and intrinsic apoptosis. High steady-state levels of Bcl-2 were identified as potentially accounting for the resistance of a proportion of glioblastoma lines to factors secreted by activated CTLs.
Related JoVE Video
Increased frequency and responsiveness of PSA-specific T cells after allogeneic hematopoetic stem-cell transplantation.
Transplantation
PUBLISHED: 03-25-2009
Show Abstract
Hide Abstract
Therapies for localized prostate cancer include curative surgery and radiotherapy while treatment of metastatic disease is often inefficient. Graft-versus-tumor effects of allogeneic stem-cell transplantation (ASCT) have been described for several types of solid tumors but have not been reported for prostate cancer. We, therefore, investigated the potential of ASCT as treatment for noncurable prostate cancer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.