JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
ACS Nano
PUBLISHED: 08-22-2014
Show Abstract
Hide Abstract
Metal nanoclusters, sometimes called metamolecules or plasmonic oligomers, exhibit interesting optical properties such as Fano resonances and optical chirality. These properties promise a variety of practical applications, particularly in ultrasensitive biochemical sensing. Here we investigate experimentally the sensitivities of plasmonic pentamers and quadrumers to the adsorption of self-assembled nanometer-thick alkanethiol monolayers. The monolayer sensitivity of such oligomers is found to be significantly higher than that of single plasmonic nanoparticles and depends on the nanocluster arrangement, constituent nanoparticle shape, and the plasmon resonance wavelength. Together with full-wave numerical simulation results and the electromagnetic perturbation theory, we unveil a direct correlation between the sensitivity and the near-field intensity enhancement and spatial localization in the plasmonic "hot" spots generated in each nanocluster. Our observation is beyond conventional considerations (such as optimizing nanoparticle geometry or narrowing resonance line width) for improving the sensing performance of metal nanoclusters-based biosensors and opens the possibilities of using plasmonic nanoclusters for single-molecule detection and identification.
Related JoVE Video
Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride.
Nat Commun
PUBLISHED: 07-16-2014
Show Abstract
Hide Abstract
Strongly anisotropic media, where the principal components of the dielectric tensor have opposite signs, are called hyperbolic. Such materials exhibit unique nanophotonic properties enabled by the highly directional propagation of slow-light modes localized at deeply sub-diffractional length scales. While artificial hyperbolic metamaterials have been demonstrated, they suffer from high plasmonic losses and require complex nanofabrication, which in turn induces size-dependent limitations on optical confinement. The low-loss, mid-infrared, natural hyperbolic material hexagonal boron nitride is an attractive alternative. Here we report on three-dimensionally confined 'hyperbolic polaritons' in boron nitride nanocones that support four series (up to the seventh order) modes in two spectral bands. The resonant modes obey the predicted aspect ratio dependence and exhibit high-quality factors (Q up to 283) in the strong confinement regime (up to ?/86). These observations assert hexagonal boron nitride as a promising platform for studying novel regimes of light-matter interactions and nanophotonic device engineering.
Related JoVE Video
Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization.
J Opt Soc Am A Opt Image Sci Vis
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
Discrete-dipole approximation (DDA), which is used for computing scattering and absorption by particles of arbitrary geometry and material, is extended to the case of a rectangular cuboidal point lattice using an accurate, analytical expression of the polarizability of each cuboidal element at optical frequencies of up to 100 nm in size. This polarizability formulation (cuboidal lattice with depolarization or CLD) is shown to be more accurate in the computation of the extinction, scattering, and absorption cross sections when simulating dielectrics compared to other available and commonly used expressions of the polarizability. This can be used to reduce the number of dipoles N used, and therefore, the computation time while achieving the same accuracy of other formulations. The CLD formulation was applied to the Mie scattering problem and the results were compared to results from other DDA formulations, as well as to the Mie analytical solution for metal and dielectric spheres. Metal cubes were also simulated and different formulations compared.
Related JoVE Video
Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.
J. Am. Chem. Soc.
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.
Related JoVE Video
Plasmonic Nanoprobes for Real-Time Optical Monitoring of Nitric Oxide inside Living Cells.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
An optical sensor was developed for the quantitative determination of intracellular nitric oxide. The sensor consists of plasmonic nanoprobes that have a coating of mesoporous silica and an inner gold island film functionalized with a chemoreceptor for NO.
Related JoVE Video
Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators.
Nano Lett.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is aided by optical phonons. Using fabricated 6H-silicon carbide nanopillar antenna arrays, we report on the observation of subdiffraction, localized SPhP resonances. They exhibit a dipolar resonance transverse to the nanopillar axis and a monopolar resonance associated with the longitudinal axis dependent upon the SiC substrate. Both exhibit exceptionally narrow linewidths (7-24 cm(-1)), with quality factors of 40-135, which exceed the theoretical limit of plasmonic systems, with extreme subwavelength confinement of (?(res)3/V(eff))1/3 = 50-200. Under certain conditions, the modes are Raman-active, enabling their study in the visible spectral range. These observations promise to reinvigorate research in SPhP phenomena and their use for nanophotonic applications.
Related JoVE Video
Simultaneous SERS detection of copper and cobalt at ultratrace levels.
Nanoscale
PUBLISHED: 05-22-2013
Show Abstract
Hide Abstract
We report a SERS-based method for the simultaneous and independent determination of two environmental metallic pollutants, Cu(ii) and Co(ii). This was achieved by exploiting the coordination-sensitive Raman bands of a terpyridine (TPY) derivative for detecting transition metal ions. Changes in the vibrational SERS spectra of dithiocarbamate anchored terpyridine (TPY-DTC) were correlated as a function of each metal ion concentration, with limits of detection comparable to those of several conventional analytical methods. Simultaneous detection of ultratrace levels of Co(ii) in the presence of high Cu(ii) concentration was also demonstrated, supporting the potential of this sensing strategy for monitoring potable water supplies.
Related JoVE Video
Beyond the Hybridization Effects in Plasmonic Nanoclusters: Diffraction-Induced Enhanced Absorption and Scattering.
Small
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
It is demonstrated hererin both theoretically and experimentally that Youngs interference can be observed in plasmonic structures when two or three nanoparticles with separation on the order of the wavelength are illuminated simultaneously by a plane wave. This effect leads to the formation of intermediate-field hybridized modes with a character distinct of those mediated by near-field and/or far-field radiative effects. The physical mechanism for the enhancement of absorption and scattering of light due to plasmonic Youngs interference is revealed, which we explain through a redistribution of the Poynting vector field and the formation of near-field subwavelength optical vortices.
Related JoVE Video
Probing the dielectric response of graphene via dual-band plasmonic nanoresonators.
Phys Chem Chem Phys
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
In this article, we use optical transmission spectroscopy to measure the changes in the resonance features of a Au plasmonic nanoresonator array consisting of concentric ring/disc cavity elements, when graphene is introduced as an encapsulating medium. We show that by using finite element modelling to best reproduce our experimental results the dielectric response of the graphene film can be determined. We discuss the potential of such structures for chemical sensing applications.
Related JoVE Video
Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells.
Opt Express
PUBLISHED: 07-13-2011
Show Abstract
Hide Abstract
We report three-dimensional modelling of plasmonic solar cells in which electromagnetic simulation is directly linked to carrier transport calculations. To date, descriptions of plasmonic solar cells have only involved electromagnetic modelling without realistic assumptions about carrier transport, and we found that this leads to considerable discrepancies in behaviour particularly for devices based on materials with low carrier mobility. Enhanced light absorption and improved electronic response arising from plasmonic nanoparticle arrays on the solar cell surface are observed, in good agreement with previous experiments. The complete three-dimensional modelling provides a means to design plasmonic solar cells accurately with a thorough understanding of the plasmonic interaction with a photovoltaic device.
Related JoVE Video
Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach.
Nano Lett.
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
The interaction between plasmonic resonances, sharp modes, and light in nanoscale plasmonic systems often leads to Fano interference effects. This occurs because the plasmonic excitations are usually spectrally broad and the characteristic narrow asymmetric Fano line-shape results upon interaction with spectrally sharper modes. By considering the plasmonic resonance in the Fano model, as opposed to previous flat continuum approaches, here we show that a simple and exact expression for the line-shape can be found. This allows the role of the width and energy of the plasmonic resonance to be properly understood. As examples, we show how Fano resonances measured on an array of gold nanoantennas covered with PMMA, as well as the hybridization of dark with bright plasmons in nanocavities, are well reproduced with a simple exact formula and without any fitting parameters.
Related JoVE Video
Controlling light localization and light-matter interactions with nanoplasmonics.
Small
PUBLISHED: 09-30-2010
Show Abstract
Hide Abstract
Nanoplasmonics is the emerging research field that studies light-matter interactions mediated by resonant excitations of surface plasmons in metallic nanostructures. It allows the manipulation of the flow of light and its interaction with matter at the nanoscale (10(-9) m). One of the most promising characteristics of plasmonic resonances is that they occur at frequencies corresponding to typical electronic excitations in matter. This leads to the appearance of strong interactions between localized surface plasmons and light emitters (such as molecules, dyes, or quantum dots) placed in the vicinity of metals. Recent advances in nanofabrication and the development of novel concepts in theoretical nanophotonics have opened the way to the design of structures aimed to reduce the lifetime and enhance the decay rate and quantum efficiency of available emitters. In this article, some of the most relevant experimental and theoretical achievements accomplished over the last several years are presented and analyzed.
Related JoVE Video
Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
Opt Express
PUBLISHED: 02-23-2010
Show Abstract
Hide Abstract
Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors.
Related JoVE Video
Long-range guided THz radiation by thin layers of water.
Opt Express
Show Abstract
Hide Abstract
We propose a novel method to guide THz radiation with low losses along thin layers of water. This approach is based on the coupling of evanescent surface fields at the opposite sides of the thin water layer surrounded by a dielectric material, which leads to a maximum field amplitude at the interfaces and a reduction of the energy density inside the water film. In spite of the strong absorption of water in this frequency range, calculations show that the field distribution can lead to propagation lengths of several centimeters. By means of attenuated total reflection measurements we demonstrate the coupling of incident THz radiation to the long-range surface guided modes across a layer of water with a thickness of 24 ?m. This first demonstration paves the way for THz sensing in aqueous environments.
Related JoVE Video
Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape.
Nano Lett.
Show Abstract
Hide Abstract
Plasmonic resonances with a Fano lineshape observed in metallic nanoclusters often arise from the destructive interference between a dark, subradiant mode and a bright, super-radiant one. A flexible control over the Fano profile characterized by its linewidth and spectral contrast is crucial for many potential applications such as slowing light and biosensing. In this work, we show how one can easily but significantly tailor the overall spectral profile in plasmonic nanocluster systems, for example, quadrumers and pentamers, by selectively altering the particle shape without a need to change the particle size, interparticle distance, or the number of elements of the oligomers. This is achieved through decomposing the whole spectrum into two separate contributions from subgroups, which are efficiently excited at their spectral peak positions. We further show that different strengths of interference between the two subgroups must be considered for a full understanding of the resulting spectral lineshape. In some cases, each subgroup is separately active in distinct frequency windows with only small overlap, leading to a simple convolution of the subspectra. Variation in particle shape of either subgroup results in the tuning of the overall spectral lineshape, which opens a novel pathway for shaping the plasmonic response in small nanoclusters.
Related JoVE Video
Plasmonic systems unveiled by Fano resonances.
ACS Nano
Show Abstract
Hide Abstract
We show in detail how a derivation of Fano theory can serve as a new paradigm to study, understand, and control the interaction of nano-objects with light. Examples include a plasmonic crystal, a dolmen-type structure sustaining dark and bright plasmon modes, and a nanoshell heptamer. On the basis of only three coupling factors, a straightforward analytical formula is obtained, only assuming a plasmonic resonance for the continuum, and retaining the nonclassical character of the original formalism. It allows one to predict, reproduce, or decompose Fano interferences solely in terms of the physical properties of the uncoupled nanostructures when available, without the need of additional fitting parameters.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.