JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40hiCD5+ regulatory B cells in vitro and in vivo.
BMB Rep
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40hiCD5+ B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B-cell activating factor, suggesting that CD40hi is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10-/-CD5+CD19+ B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40hiCD5+ Breg cells in mice. However, the population of CD40hiCD5+ B cells was minimal in IL-10-/- mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40hiCD5+ B cells and the autocrine effect of IL-10 is critical to the formation of CD40hiCD5+ Breg cells.
Related JoVE Video
The Role of TLR4 and Fyn Interaction on Lipopolysaccharide-Stimulated PAI-1 Expression in Astrocytes.
Mol. Neurobiol.
PUBLISHED: 08-09-2014
Show Abstract
Hide Abstract
Plasminogen activator inhibitor-1 (PAI-1) is an endogenous inhibitor of tissue plasminogen activator (tPA) that acts as a neuromodulator in various neurophysiological and pathological conditions. Several researchers including us reported the induction of PAI-1 during inflammatory condition; however, the mechanism regulating PAI-1 induction is not yet clear. In this study, we investigated the role of non-receptor tyrosine kinase Fyn in the regulation of lipopolysaccharide (LPS)-induced upregulation of PAI-1 in rat primary astrocyte. The activation of toll-like receptor 4 (TLR4) signaling, induced by its ligand LPS, stimulated a physical interaction between TLR4 and Fyn along with phosphorylation of tyrosine residue in both molecules as determined by co-immunoprecipitation experiments. Immunofluorescence staining also showed increased co-localization of TLR4-Fyn on cultured rat primary astrocytes after LPS treatment. The increased TRLR4-Fyn interaction induced expression of PAI-1 through the activation of PI3k/Akt/NF?B pathway. Treatment with Src kinase inhibitor (PP2) or transfection of Fyn small interfering RNA (siRNA) into cultured rat primary astrocytes inhibited phosphorylation of tyrosine residue of TLR4 and blocked the interaction between TLR4 and Fyn resulting to the inhibition of LPS-induced expression of PAI-1. The activation of PI3K/Akt/NF?B signaling cascades was also inhibited by Fyn knockdown in rat primary astrocytes. The induction of PAI-1 in rat primary astrocytes, which resulted in downregulation of tPA activity in culture supernatants, inhibited neurite outgrowth in cultured rat primary cortical neuron. The inhibition of neurite extension was prevented by PP2 or Fyn siRNA treatment in rat primary astrocytes. These results suggest the critical physiological role of TRL4-Fyn interaction in the modulation of PAI-1-tPA axis in astrocytes during neuroinflammatory responses such as ischemia/reperfusion injuries.
Related JoVE Video
The scaffold protein prohibitin is required for antigen-stimulated signaling in mast cells.
Sci Signal
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
The protein prohibitin (PHB) is implicated in diverse cellular processes, including cell signaling, transcriptional control, and mitochondrial function. We found that PHB was abundant in the intracellular granules of mast cells, which are critical for allergic responses to antigens. Thus, we investigated whether PHB played a role in signaling mediated by the high-affinity receptor for antigen-bound immunoglobulin E (IgE), Fc?RI. PHB-specific small interfering RNAs (siRNAs) inhibited antigen-mediated signaling, degranulation, and cytokine secretion by mast cells in vitro. Knockdown of PHB inhibited the antigen-dependent association of the tyrosine kinase Syk with Fc?RI and inhibited the activation of Syk. Fractionation studies revealed that PHB translocated from intracellular granules to plasma membrane lipid rafts in response to antigen, and knockdown of PHB suppressed the movement of Fc?RI? and Syk into lipid rafts. Tyrosine phosphorylation of PHB by Lyn was observed early after exposure to antigen, and point mutations in PHB indicated that Tyr(114) and Tyr(259) were required for the recruitment of Syk to Fc?RI? and mast cell activation. In mice, PHB-specific siRNAs inhibited antigen-initiated mast cell degranulation, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. Together, these results suggest that PHB is essential for Fc?RI-mediated mast cell activation and allergic responses in vivo, raising the possibility that PHB might serve as a therapeutic target for the treatment of allergic diseases.
Related JoVE Video
A novel anthracene derivative, MHY412, induces apoptosis in doxorubicin-resistant MCF-7/Adr human breast cancer cells through cell cycle arrest and downregulation of P-glycoprotein expression.
Int. J. Oncol.
PUBLISHED: 08-30-2013
Show Abstract
Hide Abstract
New potential chemotherapeutic strategies are required to overcome multidrug resistance (MDR) in cancer. This study investigated the anticancer effect of a novel anthracene derivative MHY412 on doxorubicin-resistant human breast cancer (MCF-7/Adr) cells. We measured cell viability and the expression of apoptosis-related genes; in addition, the antitumor activity of MHY412 was confirmed using an in vivo tumor xenograft model. MHY412 significantly inhibited the proliferation of MCF-7/Adr and MCF-7 cells in a concentration-dependent manner. Notably, the half?maximal inhibitory concentration (IC50) values of MHY412 in MCF-7/Adr (0.15 µM) and MCF-7 (0.26 µM) cells were lower than those of doxorubicin (MCF-7/Adr, 13.6 µM and MCF-7, 1.26 µM) after treatment for 48 h. MHY412 at low concentrations induced S phase arrest, but at high concentrations, the number of MCF-7/Adr cells in the sub-G1 phase significantly increased. MHY412-induced sub-G1 phase arrest was associated with inhibition of cyclin, cyclin?dependent kinase 2 (CDK2) and p21 expression in MCF-7/Adr cells. MHY412 markedly reduced P-glycoprotein (P-gp) expression and increased apoptotic cell death in MCF-7/Adr cells. Cleavage of poly-ADP ribose polymerase, reduced Bcl-2 expression, and increased in cytochrome c release in MCF-7/Adr cells confirmed the above results. In addition, MHY412 markedly inhibited tumor growth in a tumor xenograft model of MCF-7/Adr cells. Our data suggest that MHY412 exerts antitumor effects by selectively modulating the genes related to cell cycle arrest and apoptosis. In particular, MHY412 is a new candidate agent for the treatment of Bcl-2 overexpressed doxorubicin-resistant human breast cancer.
Related JoVE Video
Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin.
Biochim. Biophys. Acta
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines.
Related JoVE Video
Morus bombycis extract suppresses mast cell activation and IgE-mediated allergic reaction in mice.
J Ethnopharmacol
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Morus bombycis Koidzumi (MB) is widely distributed throughout Korea, where it is used as a traditional folk remedy for the treatment of allergic diseases including asthma. However, the pharmacological effect and the mechanistic study of MB have not been investigated. We aimed to investigate the anti-allergic activity of MB in vitro and in vivo and the mechanism of its action on mast cells.
Related JoVE Video
A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells.
Biomed. Pharmacother.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Histone deacetylase (HDAC) inhibitors are a new class of anticancer agents that act by inhibiting cancer cell proliferation and inducing apoptosis in various cancer cell lines. To investigate the anticancer effect of a novel histone deacetylase (HDAC) inhibitor MHY219, its efficacy was compared to that of suberoylanilide hydroxamic acid (SAHA) in human prostate cancer cells. The anticancer effects of MHY219 on cell viability, HDAC enzyme activity, cell cycle regulation, apoptosis and other biological assays were performed. MHY219 was shown to enhance the cytotoxicity on DU145 cells (IC??, 0.36 ?M) when compared with LNCaP (IC??, 0.97 ?M) and PC3 cells (IC??, 5.12 ?M). MHY219 showed a potent inhibition of total HDAC activity when compared with SAHA. MHY219 increased histone H3 hyperacetylation and reduced the expression of class I HDACs (1, 2 and 3) in prostate cancer cells. MHY219 effectively increased the sub-G1 fraction of cells through p21 and p27 dependent pathways in DU145 cells. MHY219 significantly induced a G2/M phase arrest in DU145 and PC3 cells and arrested the cell cycle at G0/G1 phase in LNCaP cells. Furthermore, MHY219 effectively increased apoptosis in DU145 and LNCaP cells, but not PC3 cells, according to Annexin V/PI staining and Western blot analysis. These results indicate that MHY219 is a potent HDAC inhibitor that targets regulating multiple aspects of cancer cell death and might have preclinical value in human prostate cancer chemotherapy, warranting further investigation.
Related JoVE Video
A mixture of Trachelospermi caulis and Moutan cortex radicis extracts suppresses collagen-induced arthritis in mice by inhibiting NF-?B and AP-1.
J. Pharm. Pharmacol.
PUBLISHED: 12-08-2011
Show Abstract
Hide Abstract
We aimed to determine the anti-arthritis effect and its mechanism of a combination of herbal extracts from Trachelospermi caulis (TC) and Moutan cortex radicis (MC) (TCMC).
Related JoVE Video
IL-10 is predominantly produced by CD19(low)CD5(+) regulatory B cell subpopulation: characterisation of CD19 (high) and CD19(low) subpopulations of CD5(+) B cells.
Yonsei Med. J.
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
IL-10 production by CD19(+)CD5(+) B cells was investigated, by determining the expression levels of CD19, a classical B cell marker. Peripheral mononuclear cells were stained with fluorescence-conjugated anti-CD5, anti-CD19, anti-IL-10, and Annexin V. Interestingly, IL-10-producing B cells were found to be localised within the CD19(low)CD5(+) B cell subset. Apoptotic changes were also observed mainly in CD19(low) cells among B cells. Thus, CD5(+) B cells should be classified as CD19(high) and CD19(low) cells, and the immunological significance of CD19 for the IL-10 production by CD5(+) B cells requires further studies.
Related JoVE Video
The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice.
J. Immunol.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with Fc?RI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with Fc?RI? as well as the tyrosine phosphorylation of Fc?RI?. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.
Related JoVE Video
4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice.
Toxicol. Appl. Pharmacol.
PUBLISHED: 06-29-2011
Show Abstract
Hide Abstract
4-Chlorotetrazolo[1,5-a]quinoxaline is a quinoxaline derivative. We aimed to study the effects of 4-chlorotetrazolo[1,5-a]quinoxaline on activation of mast cells in vitro and in mice. 4-Chlorotetrazolo[1,5-a]quinoxaline reversibly inhibited degranulation of mast cells in a dose-dependent manner, and also suppressed the expression and secretion of TNF-? and IL-4 in mast cells. Mechanistically, 4-chlorotetrazolo[1,5-a]quinoxaline inhibited activating phosphorylation of Syk and LAT, which are crucial for early Fc?RI-mediated signaling events, as well as Akt and MAP kinases, which play essential roles in the production of various pro-inflammatory cytokines in mast cells. Notably, although 4-chlorotetrazolo[1,5-a]quinoxaline inhibited the activation of Fyn and Syk, minimal inhibition was observed in mast cells in the case of Lyn. Furthermore, consistent with its in vitro activity, 4-chlorotetrazolo[1,5-a]quinoxaline significantly suppressed mast cell-mediated passive cutaneous anaphylaxis in mice. In summary, the results from this study demonstrate that 4-chlorotetrazolo[1,5-a]quinoxaline shows an inhibitory effect on mast cells in vitro and in vivo, and that this is mediated by inhibiting the activation of Syk in mast cells. Therefore, 4-chlorotetrazolo[1,5-a]quinoxaline could be useful in the treatment of mast cell-mediated allergic diseases.
Related JoVE Video
A novel imidazo[1,5-b]isoquinolinone derivative, U63A05, inhibits Syk activation in mast cells to suppress IgE-mediated anaphylaxis in mice.
J. Pharmacol. Sci.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
Mast cells play a pivotal role in IgE-mediated allergic responses. Development of specific inhibitors against Fc?RI-associated proximal signaling molecules in mast cells may represent a promising therapeutic strategy for allergic diseases. We examined whether a novel synthetic compound, 3-butyl-1-chloro-8-(2-methoxycarbonyl)phenyl-5H-imidazo[1,5-b]isoquinolin-10-one (U63A05), could suppress antigen-stimulated degranulation and cytokine secretion in mast cells and IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. U63A05 reversibly and dose-dependently inhibited degranulation of rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMCs) stimulated by antigen (IC(50) values for RBL-2H3 and BMMCs were 4.1 and 4.8 µM, respectively). The secretion of inflammatory cytokines was also suppressed in antigen-stimulated mast cells. However, degranulation by thapsigargin, a typical calcium inducer, was not inhibited by U63A05. U63A05 exerts its inhibitory effect, to the same extent as in degranulation, on the activating phosphorylation of Syk and downstream signaling molecules, including LAT and SLP-76. Further downstream, the activating phosphorylations of Akt, Erk1/2, p38, and JNK were also inhibited. Finally, antigen-stimulated PCA was dose-dependently suppressed in mice (ED(50), 26.3 mg/kg). Taken together, the results suggest that U63A05 suppresses the activation of mast cells and the mast cell-mediated allergic response through the inhibition of Syk activation in mast cells.
Related JoVE Video
Identification of H-Ras-specific motif for the activation of invasive signaling program in human breast epithelial cells.
Neoplasia
PUBLISHED: 03-16-2011
Show Abstract
Hide Abstract
Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR), consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.
Related JoVE Video
Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages.
Exp. Cell Res.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2-O-methyladenosine-3,5-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression.
Related JoVE Video
Protein tyrosine phosphatase SHP-2 is positively involved in platelet-derived growth factor-signaling in vascular neointima formation via the reactive oxygen species-related pathway.
J. Pharmacol. Sci.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
The roles of Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP-2) and its signaling in atherosclerosis have not been explored. Therefore, we investigated the roles of SHP-2 in the movement of rat aortic smooth muscle cells (RASMCs) and in the neointima formation of the carotid artery. Platelet-derived growth factor (PDGF)-BB (1 - 20 ng/ml) increased the activity and phosphorylation of SHP-2 and migration in RASMCs and these were suppressed by SHP-2 inhibitor NSC-87877 (30 µM) and small interfering RNA of SHP-2. PDGF-BB increased the phosphorylations of spleen tyrosine kinase (Syk) and p38 mitogen-activated protein kinase (MAPK), which were recovered by inhibition of SHP-2. Moreover, PDGF-BB increased the levels of reactive oxygen species (ROS) and ROS inhibitors decreased PDGF-BB-increased migration. Treatment of RASMCs with H(2)O(2) (100 µM) increased cell migration and SHP-2 phosphorylation and also enhanced the phosphorylation levels of Syk and p38 MAPK. Oral administration of NSC-87877 (10 mg/kg) significantly suppressed neointima formation in a rat model of carotid artery injury. These results suggest that the activity of SHP-2 is controlled by ROS and is positively involved in the regulation of PDGF-BB-induced RASMC migration and neointima formation.
Related JoVE Video
Allergen-specific transforming growth factor-?-producing CD19+CD5+ regulatory B-cell (Br3) responses in human late eczematous allergic reactions to cows milk.
J. Interferon Cytokine Res.
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
CD19(+)CD5(+) regulatory B cells produce transforming growth factor ? (TGF-?) in both mouse and human B-cell leukemias. In this study, TGF-? was uniquely produced by normal human regulatory B cells. TGF-?-producing regulatory B-cell (Br3) responses were characterized through allergic responses to cows milk. In total, 10 subjects allergic to milk and 13 milk-tolerant subjects were selected following double-blinded, placebo-controlled food challenges. Their peripheral blood mononuclear cells were stimulated in vitro with casein. Following allergen stimulation, the percentage of Br3s among CD5(+) B cells decreased from 11.5%?±?13.7% to 8.0%?±?9.6% (P?=?0.042, n?=?5) in the milk-allergy group and increased from 14.7%?±?15.6% to 18.9%?±?20.1% (P?=?0.006, n?=?7) in the milk-tolerant group. However, the numbers of Br3s increased only in the milk-tolerant group, from 1,954?±?1,058 to 4,548?±?1,846 per well (P?=?0.026), whereas the numbers of Br3s in the milk-allergy group were unchanged [2,596?±?823 to 2,777?±?802 per well (P?=?0.734)]. The numbers of apoptotic events were similar to the numbers of total Br3 responses. The percentage of non-TGF-?-producing CD5(+) B cells with apoptotic changes increased from 13.4%?±?17.1% to 16.4%?±?20.3% (P?=?0.047, n?=?5) in the milk-allergy group and remained unchanged [from 9.9%?±?11.9% to 9.3%?±?11.4% (P?=?0.099, n?=?7)] in the milk-tolerant group. Using carboxyfluorescein succinimidyl ester labeling, we observed that the percentage of proliferating Br3s among CD5(+) B cells was unchanged [from 6.1%?±?2.8% to 6.4%?±?2.9% (P?=?0.145)] in the milk-allergy group and increased from 6.8%?±?3.9% to 10.2%?±?5.3% (P?=?0.024) in the milk-tolerant group. In conclusion, Br3s proliferated in response to allergen stimulation in the milk-tolerant group and not in the milk-allergy group. TGF-?-producing regulatory B cells (Br3) may be involved in allergy tolerance by negatively regulating the immune system with TGF-?, and this negative regulation may be controlled by apoptosis.
Related JoVE Video
Morus bombycis Koidzumi extract suppresses collagen-induced arthritis by inhibiting the activation of nuclear factor-?B and activator protein-1 in mice.
J Ethnopharmacol
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Morus bombycis Koidzumi is widely distributed in Asia. In Korea, it has been used in traditional medicine because of its apparent anti-inflammatory, antioxidant, and hepatoprotective properties.
Related JoVE Video
Presence of Foxp3-expressing CD19(+)CD5(+) B Cells in Human Peripheral Blood Mononuclear Cells: Human CD19(+)CD5(+)Foxp3(+) Regulatory B Cell (Breg).
Immune Netw
PUBLISHED: 11-11-2010
Show Abstract
Hide Abstract
Foxp3 is a transcript factor for regulatory T cell development. Interestingly, Foxp3-expressing cells were identified in B cells, especially in CD19(+)CD5(+) B cells, while those were not examined in CD19(+)CD5(-) B cells. Foxp3-expressing CD5(+) B cells in this study were identified in human PBMCs and were found to consist of 8.5±3.5% of CD19(+)CD5(+) B cells. CD19(+)CD5(+)Foxp3(+) B cells showed spontaneous apoptosis. Rare CD19(+)CD5(+) Foxp3(+) regulatory B cell (Breg) population was unveiled in human peripheral blood mononuclear cells and suggested as possible regulatory B cells (Breg) as regulatory T cells (Treg). The immunologic and the clinical relevant of Breg needs to be further investigated.
Related JoVE Video
Clinical characteristics of oral tolerance induction of IgE-mediated and non-IgE-mediated food allergy using interferon gamma.
Allergy Asthma Proc
PUBLISHED: 09-08-2010
Show Abstract
Hide Abstract
Food allergies are classified as IgE-mediated food allergies (IFAs) and non-IgE-mediated food allergies (NFAs). Recently, oral immunotherapy (OIT) has been found to be successful for treating both IFA and NFA, especially using interferon (IFN) gamma. This study was designed to clarify the clinical characteristics of IFA and NFA and compare the therapeutic characteristics of OIT using subcutaneously administered IFN-gamma for both types of food allergy. In this study, 148 patients were categorized into the IFA and NFA group following food challenge, skin-prick test and food-specific IgE tests. The patients were then treated using protocols specific for IFA and NFA using subcutaneous IFN-gamma injection as a randomized controlled trial. The principle of complete allergy resolution at prior dose in the case of IFA was also evaluated. Only the patients with IFA and NFA treated with OIT using IFN-gamma achieved tolerance successfully. Tolerance was achieved from low-dose range in IFA and in high-dose range for NFA. Complete tolerance was not obtained without achieving complete allergy resolution at each dose of the allergen before increasing the dosage in IFA. Both IFA and NFA can be successfully treated with OIT using IFN-gamma but show different clinical and therapeutic characteristics. IFN-gamma is necessary for the tolerance induction but not for tolerance maintenance. Additional study for the mechanisms of tolerance induction by IFN-gamma is needed.
Related JoVE Video
Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide.
Mol. Cells
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
While natural antimicrobial peptides are potential therapeutic agents, their physicochemical properties and bioactivity generally need to be enhanced for clinical and commercial development. We have previously developed a cationic, amphipathic ?-helical, 11-residue peptide (named herein GA-W2: FLGWLFKWASK-NH?) with potent antimicrobial and hemolytic activity, which was derived from a 24-residue, natural antimicrobial peptide isolated from frog skin. Here, we attempted to optimize peptide bioactivity by a rational approach to sequence modification. Seven analogues were generated from GA-W2, and their activities were compared with that of a 12-residue peptide, omiganan, which is being developed for clinical and commercial applications. Most of the modifications reported here improved antimicrobial activity. Among them, the GA-K4AL (FAKWAFKWLKK-NH?) peptide displayed the most potent antimicrobial activity with negligible hemolytic activity, superior to that of omiganan. The therapeutic index of GA-K4AL was improved more than 53- and more than 31-fold against Gram-negative and Gram-positive bacteria, respectively, compared to that of the starting peptide, GA-W2. Given its relatively shorter length and simpler amino acid composition, our sequence-optimized GA-K4AL peptide may thus be a potentially useful antimicrobial peptide agent.
Related JoVE Video
Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1? protein-dependent mechanism.
Int. J. Cancer
PUBLISHED: 07-23-2010
Show Abstract
Hide Abstract
A growing number of studies have demonstrated that physiological factors can influence the progression of several cancers via cellular immune function, angiogenesis and metastasis. Recently, stress-induced catecholamines have been shown to increase the expression of various cancer progressive factors, including vascular endothelial growth factor (VEGF), matrix metalloproteinases and interleukins. However, a detailed mechanism remains to be identified. In this study, we investigated the role of adrenergic receptors and hypoxia-inducible factor (HIF)-1? protein in catecholamine-induced VEGF expression and angiogenesis. Treatment of the cells with norepinephrine (NE) or isoproterenol induced VEGF expression and HIF-1? protein amount in a dose-dependent manner. Induction of VEGF expression by NE was abrogated when the cells were transfected with HIF-1?-specific siRNA. Similarly, adenylate cyclase activator forskolin and cyclic AMP-dependent protein kinase A inhibitor H-89 enhanced and decreased HIF-1? protein amount, respectively. More importantly, conditioned medium of NE-stimulated cancer cells induced angiogenesis in a HIF-1? protein-dependent manner. In addition, pretreatment of cells with propranolol, a ?-adrenergic receptor (AR) blocker, completely abolished induction of VEGF expression and HIF-1? protein amount by NE in all of the tested cancer cells. However, treatment with the ?1-AR blocker prazosin inhibited NE-induced HIF-1? protein amount and angiogenesis in SK-Hep1 and PC-3 but not MDA-MB-231 cells. Collectively, our results suggest that ARs and HIF-1? protein have critical roles in NE-induced VEGF expression in cancer cells, leading to stimulation of angiogenesis. These findings will help to understand the mechanism of cancer progression by stress-induced catecholamines and design therapeutic strategies for cancer angiogenesis.
Related JoVE Video
Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes.
Cell. Mol. Life Sci.
PUBLISHED: 05-17-2010
Show Abstract
Hide Abstract
Interleukin (IL)-33 is a recently described pro-inflammatory cytokine. Here we demonstrate IL-33 as a regulator of functional osteoclasts (OCs) from human CD14(+) monocytes. IL-33 stimulates formation of tartrate-resistant acid phosphatase (TRAP)(+) multinuclear OCs from monocytes. This action was suppressed by anti-ST2 antibody, suggesting that IL-33 acts through its receptor ST2, but not by the receptor activator of NF-?B ligand (RANKL) decoy, osteoprotegerin, or anti-RANKL antibody. IL-33 stimulated activating phosphorylations of signaling molecules in monocytes that are critical for OC development. These included Syk, phospholipase C?2, Gab2, MAP kinases, TAK-1, and NF-?B. IL-33 also enhanced expression of OC differentiation factors including TNF-? receptor-associated factor 6 (TRAF6), nuclear factor of activated T cells cytoplasmic 1, c-Fos, c-Src, cathepsin K, and calcitonin receptor. IL-33 eventually induced bone resorption. This study suggests that the osteoclastogenic property of IL-33 is mediated through TRAF6 as well as the immunoreceptor tyrosine-based activation motif-dependent Syk/PLC? pathway in human CD14(+) monocytes.
Related JoVE Video
Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells.
J Ethnopharmacol
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Gastrodia elata (GE) Blume (Orchidaceae) has been traditionally used as a folk medicine in Oriental countries since centuries for their variety of therapeutic benefits. This study is an attempt to investigate the protective effects of GE extract against MPP(+)-induced cytotoxicity in human dopaminergic SH-SY5Y cells and explore the neuroprotective mechanisms involved.
Related JoVE Video
Characterisation of allergen-specific responses of IL-10-producing regulatory B cells (Br1) in Cow Milk Allergy.
Cell. Immunol.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
CD19+CD5+ regulatory B cells regulate immune responses by producing IL-10. IL-10-producing regulatory B cell (Br1) responses by allergen stimulation were investigated in human food allergy. Six milk allergy patients and eight milk-tolerant subjects were selected according to DBPCFC. PBMCs were stimulated by casein in vitro and stained for intracellular IL-10 and apoptosis. In response to allergen stimulation, Br1 decreased from 26.2+/-18.3 to 15.5+/-8.9% (p=0.031, n=6) in the milk allergy group and increased from 15.4+/-9.0 to 23.7+/-11.2% (p=0.023, n=8) in the milk-tolerant group. Apoptotic non-IL-10-producing regulatory B cells increased from 21.8+/-9.3 to 38.0+/-16.1% (p=0.031, n=6) in the milk allergy group and unchanged from 28.8+/-13.8 to 28.0+/-15.0% (p=0.844, n=8) in the milk-tolerant group. Br1 may be involved in the immune tolerance of food allergies by producing IL-10 and simultaneously undergoing apoptosis in humans. The exact roles for Br1 in immune tolerance needs to be further investigated.
Related JoVE Video
Cardioprotective effects of the novel Na+/H+ exchanger-1 inhibitor KR-32560 in a perfused rat heart model of global ischemia and reperfusion: Involvement of the Akt-GSK-3beta cell survival pathway and antioxidant enzyme.
Arch. Pharm. Res.
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
To investigate the cardioprotective effects and mechanism of action of KR-32560 {[5-(2-methoxy-5-fluorophenyl)furan-2-ylcarbonyl]guanidine}, a newly synthesized NHE-1 inhibitor, we evaluated the effects of KR-32560 on cardiac function in a rat model of ischemia/reperfusion (I/R)-induced heart injury as well as the role antioxidant enzymes and pro-survival proteins play these observed effects. In isolated rat hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, KR-32560 (3 and 10 microM) significantly reversed the I/Rinduced decrease in left ventricular developed pressure and increase in left ventricular enddiastolic pressure. In rat hearts reperfused for 30 min, KR-32560 (10 microM) significantly decreased the malondialdehyde content while increasing the activities of both glutathione peroxidase and catalase, two important antioxidant enzymes. Western blotting analysis of left ventricles subjected to I/R showed that KR-32560 significantly increased phosphorylation of both Akt and GSK-3beta in a dose-dependent manner, with no effect on the phosphorylation of eNOS. These results suggest that KR-32560 exerts potent cardioprotective effects against I/Rinduced rat heart injury and that its mechanism involves antioxidant enzymes and the Akt-GSK-3beta cell survival pathway.
Related JoVE Video
Interleukin-32? production is regulated by MyD88-dependent and independent pathways in IL-1?-stimulated human alveolar epithelial cells.
Immunobiology
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Interleukin (IL)-32 is a recently described cytokine that appears to play a critical role in a variety of inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, thus far, the regulation of IL-32 production has not been fully established. Here, we report on signaling pathways that regulate the production of IL-32?, the most abundant isoform, in the human alveolar epithelial cell line, A549. IL-32? was expressed and secreted by IL-1?. The IL-32 expression was attenuated by PP2 (a Src-family kinase [SFK] inhibitor), rottlerin (a protein kinase [PK] C? inhibitor), and LY294002 (a phosphatidylinositol 3-kinase [PI3K] inhibitor). Furthermore, the overexpression of Fgr rather than other SFKs upregulated IL-32? expression, while Fgr small interfering RNA (siRNA) transfection downregulated it. The suppression of Fgr with PP2 and Fgr siRNA inhibited activating phosphorylation of PKC? and PI3K/Akt, but not IL-1 receptor-associated kinase (IRAK)1, a well-known MyD88-dependent signaling molecule, and Erk1/2, p38, and JNK. Rottlerin and PKC? siRNA also inhibited expression of IL-32? and activation of PI3K/Akt, but not of IRAK1 and mitogen activation protein (MAP) kinases. MyD88 siRNA suppressed the expression of IL-32? and the phosphorylation of IRAK1, PI3K, and MAP kinases, but not of PKC?. Of interest, both Fgr/PKC? and MyD88-dependent signals regulated PI3K/Akt, suggesting that it is a crosstalk molecule. Among MyD88-dependent MAP kinases, only p38 regulated IL-32? expression and PI3K/Akt activation. With these results, we demonstrated that the expression and secretion of IL-32? are regulated by MyD88-dependent IRAK1/p38/PI3K and independent Fgr/PKC?/PI3K pathways, and that Fgr and PKC? are critical for the MyD88-independent IL-32? production.
Related JoVE Video
Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.
J. Pharmacol. Sci.
PUBLISHED: 09-19-2009
Show Abstract
Hide Abstract
We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.
Related JoVE Video
Allergen-specific B cell subset responses in cows milk allergy of late eczematous reactions in atopic dermatitis.
Cell. Immunol.
PUBLISHED: 08-28-2009
Show Abstract
Hide Abstract
B cells have regulatory functions in immune responses. Antigen-specific responses of B cell subsets by allergen stimulation ex vivo were examined in milk allergy of late eczematous reactions. Eight milk allergy subjects and 13 milk tolerant subjects were selected by DBPCFC. PBMCs were stimulated by casein ex vivo and stained for B cell subsets using monoclonal antibodies. CD19+ B cells unchanged from 8.7+/-3.8% to 8.0+/-5.1% (p=0.504, n=8) in the milk allergy group and decreased in the milk tolerant group from 8.5+/-3.2% to 5.0+/-1.6% (p=0.001, n=13). The fraction of apoptotic B cells in B cells significantly decreased 4.4+/-3.1% to 1.3+/-0.4% (p=0.027, n=4) in the allergy group and insignificantly increased from 2.8+/-0.6% to 5.4+/-2.6% (p=0.059, n=6) in the milk tolerant group. CD5+ regulatory B1 cell% in B cells decreased in milk allergy subjects from 36.2+/-5.0% to 31.0+/-5.7% (p=0.010) and unchanged in milk tolerant subjects from 41.6+/-10.2% to 43.8+/-10.0% (p=0.413). IL-10 producing CD19+CD5+ regulatory B cell% in CD19+CD5+ regulatory B cells significantly decreased from 24.9+/-6.5% to 13.8+/-5.6% (p=0.002, n=5) by casein stimulation in milk allergy group and unchanged from 44.8+/-11.3% to 43.9+/-10.0% (p=0.297, n=5) in the milk tolerant group. B cell subset responses to IL-4 and IL-5 were also similar in both groups. B cell subset changes seemed to have diagnostic value. Exact immunologic roles of regulatory CD5+ B1 cells need further investigation.
Related JoVE Video
Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells.
J. Pharm. Pharmacol.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
The aim was to investigate the anti-inflammatory effects of Artemisia princeps extract on the activity of anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells and antigen-expanded regulatory T cells.
Related JoVE Video
De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface.
J. Pept. Sci.
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
De novo design of amphipathic model peptides has been successful for generating many antimicrobial peptides with various lengths and amino acid compositions. Here, we suggest a very simple strategy to design antimicrobial peptides with a short length and a simple amino acid composition. Amphipathic helical properties were conferred by using only leucines and lysines and a single tryptophan was positioned at the critical amphipathic interface between the hydrophilic ending side and the hydrophobic starting side, in the helical wheel projection. According to this rule, the model peptides with 7 to 13 residues exhibited antimicrobial activity. Among them, the most potent activity against both Gram-positive and Gram-negative bacteria, covering all of the nine bacterial strains tested in this study, was found for the 11-mer sequences having a 1:1 (L(5)K(5)W(6)) or a 3:2 (L(6)K(4)W(6)) ratio of leucines to lysines. In particular, the former peptide L(5)K(5)W(6) could be evaluated as the most useful agent, as it showed no significant hemolytic activity with a broad-spectrum of antimicrobial activity.
Related JoVE Video
Rapamycin down-regulates inducible nitric oxide synthase by inducing proteasomal degradation.
Biol. Pharm. Bull.
PUBLISHED: 06-02-2009
Show Abstract
Hide Abstract
We investigated the effect of rapamycin, a specific inhibitor of the mammalian serine/threonine kinase, mammalian target of rapamycin (mTOR), on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pretreatment of cells with rapamycin significantly inhibited LPS-induced nitrite production and the expression of iNOS protein in a dose-dependent manner. However, LPS-induced mRNA expression of iNOS and its concomitant activation of nuclear factor (NF)-kappaB remained unchanged by rapamycin. Intriguingly, LPS-induced nitrite production and iNOS protein expression were partially blocked at nanomolar concentrations of rapamycin, whereas phosphorylation of both p70 S6 kinase and 4E-BP1 was completely abolished. The suppression of LPS-induced iNOS expression by rapamycin was reversed by the protease inhibitor lactacystin. Furthermore, rapamycin treatment stimulated 20S proteasome activity, which was slightly elevated by LPS. Taken together, our findings strongly suggest that rapamycin down-regulates LPS-induced iNOS protein expression via proteasomal activation, as well as through inhibition of the mTOR signaling pathway.
Related JoVE Video
Mechanism of apicidin-induced cell cycle arrest and apoptosis in Ishikawa human endometrial cancer cells.
Chem. Biol. Interact.
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents that act by inhibiting cell proliferation and inducing apoptosis in a variety of cancer cells. Although apicidin acts as a potent HDAC inhibitor, the precise mechanism for its anti-tumor activity in human endometrial cancer cells is not completely understood. This study examined the anti-tumor effects of apicidin in Ishikawa cancer cells. The level of cell proliferation, the stage of the cell cycle, and apoptosis were measured after the apicidin treatment. Apicidin significantly inhibited the proliferation of Ishikawa cells in a dose-dependent manner. In addition, apicidin markedly up-regulated the p21(WAF1) and down-regulated the expression of cyclins (A, B1, D1, or E), and CDKs (2 or 4), which leading to cell cycle arrest. Cell cycle analysis showed that the apicidin treatment increased the proportion of cells in the G1 phase, and decreased the ratio of cells in the S phase in a dose-dependent manner. Apicidin significantly increased the sub-G1 population and the number of TUNEL positive apoptotic cells compared with the untreated control. These results were confirmed by poly-ADP ribose polymerase (PARP), an 85-kDa fragment resulting from PARP cleavage, where apicidin increased the level of PARP cleavage and caspase-3 activity in 1.0 microM apicidin-treated cells. Apicidin-induced apoptosis through caspase-3 activation was confirmed by the increase in the release of cytochrome c and the decrease in the Bax/Bcl-2 ratio. These results suggest that apicidin has anti-tumor properties on endometrial cancer cells by inducing selectively the genes related to cell cycle arrest and apoptosis.
Related JoVE Video
Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.
J Ethnopharmacol
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Chrysanthemum morifolium Ramat (Asteraceae) has (CM) long been used in Korean and Chinese traditional herbal medicines with numerous therapeutic applications.
Related JoVE Video
Reversine increases the plasticity of lineage-committed cells toward neuroectodermal lineage.
J. Biol. Chem.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Functional dedifferentiation of lineage-committed cells toward pluripotency may have a great potential in regenerative medicine. Reversine has been shown to induce dedifferentiation of multiple terminally differentiated mesodermal origin cells, which are capable of being directed to differentiate into other cell types within mesodermal lineages. However, the possibilities of these cells to give rise to other lineages have not been examined. Here we show that large scale gene expression profiling of reversine-treated C2C12 myoblasts identifies a subset of up-regulated genes involved in specification of neuroectodermal as well as mesodermal lineages. Reversine treatment leads to up-regulation of priming genes of neuroectodermal lineages, such as Ngn2, Nts, Irx3, Pax7, Hes1, and Hes6, through active histone modifications in the promoter regions of these genes. Additionally, reversine increases the expression of markers for other cell types of mesodermal lineages, Ogn and apoE, via inducing active histone modifications, while down-regulating the myogenic basic helix-loop-helix factor, MyoD, via repressive histone modifications. Consistent with up-regulation of these genes, reversine-treated C2C12 myoblasts redifferentiate into neural as well as mesodermal lineages, under appropriate stimuli. Taken together, these results indicate that reversine induces a multipotency of C2C12 myoblasts via inducing a specific combination of active histone modifications. Collectively, our findings provide a mechanistic rationale for the application of reversine to dedifferentiation of somatic cells.
Related JoVE Video
Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats.
J. Pharmacol. Sci.
PUBLISHED: 03-24-2009
Show Abstract
Hide Abstract
We determined the action mechanism of cordycepin, a major bioactive component of Cordyceps militaris, on responses of rat aortic smooth muscle cells (RASMCs) and on vascular disorders, especially neointimal formation. Cordycepin inhibited platelet-derived growth factor-BB (PDGF-BB)-induced RASMCs migration and proliferation in a dose-dependent manner. However, pre-treatment with N(omega)-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor, and 1,3-dipropyl-8-sulphophenylxanthine (DPSPX), an A(1)/A(2) adenosine-receptor antagonist, abolished the inhibitory role of cordycepin. Cordycepin suppressed the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and heat shock protein 27 (Hsp27), but not that of extracellular signal-regulated kinase (ERK) 1/2 in RASMCs stimulated by PDGF-BB. The production of reactive oxygen species (ROS), O(2)(-) and H(2)O(2), induced by PDGF-BB was abolished by the treatment of cordycepin. Moreover, the sprout outgrowth of aortic rings by PDGF-BB was inhibited by cordycepin. In vivo neointimal formation evoked by balloon-injury was significantly attenuated by the administration of cordycepin. These results demonstrate that cordycepin may exert inhibitory effects on PDGF-BB-induced migration and proliferation via interfering with adenosine receptor-mediated NOS pathways, thus resulting in the attenuation of neointima formation. In conclusion, cordycepin may be a potent, promising anti-atherosclerosis agent.
Related JoVE Video
Tumor necrosis factor alpha-induced interleukin-32 is positively regulated via the Syk/protein kinase Cdelta/JNK pathway in rheumatoid synovial fibroblasts.
Arthritis Rheum.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
Interleukin-32 (IL-32) is a recently discovered cytokine that appears to play a critical role in human rheumatoid arthritis (RA). It is highly expressed in synovium and fibroblast-like synoviocytes (FLS) from RA patients, but not in patients with osteoarthritis (OA). This study was undertaken to assess IL-32 levels in RA synovial fluid (SF) and to investigate the secretion and regulation of IL-32 in RA FLS.
Related JoVE Video
Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses.
Arch. Pharm. Res.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
Saponin components are known to be pharmaceutically, cosmetically and nutraceutically valuable principles found in various herbal medicine. In this study, we evaluated the inhibitory role of saponin fraction (SF), prepared from C. lanceolata, an ethnopharmacologically famous plant, on various inflammatory responses managed by monocytes, macrophages, lymphocytes and mast cells. SF clearly suppressed the release of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha, but not prostaglandin E(2) (PGE(2)). While this fraction did not scavenge the reactivity of SNP-induced radicals in RAW264. 7 cells, it negatively modulated the phagocytic uptake of macrophages treated with FITC-dextran. Interestingly, SF completely diminished cell-cell adhesion events induced by both CD29 and CD43, but not cell-fibronectin adhesion. Concanavalin (Con) A [as well phytohemaglutinin A (PHA)]-induced proliferation of splenic lymphocytes as well as interferon (IFN)-gamma production were also clearly suppressed by SF treatment. Finally, SF also significantly blocked the degranulation process of mast cell line RBL-2H3 cell as assessed by DNP-BSA-induced beta-hexosaminidase activity. The anti-inflammatory activities of SF on NO production seemed to be due to inhibition of nuclear factor (NF)-kappaB activation signaling, since it blocked the phosphorylation of inhibitor of kappaB (IkappaB)alpha as well as inducible NO synthase (iNOS) expression. Therefore, these results suggest that SF may be considered as a promising herbal medicine with potent anti-inflammatory actions.
Related JoVE Video
KR-31761, a novel K+(ATP)-channel opener, exerts cardioprotective effects by opening both mitochondrial K+(ATP) and Sarcolemmal K+(ATP) channels in rat models of ischemia/reperfusion-induced heart injury.
J. Pharmacol. Sci.
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
The cardioprotective effects of KR-31761, a newly synthesized K+(ATP) opener, were evaluated in rat models of ischemia/reperfusion (I/R) heart injury. In isolated rat hearts subjected to 30-min global ischemia/30-min reperfusion, KR-31761 perfused prior to ischemia significantly increased both the left ventricular developed pressure (% of predrug LVDP: 17.8, 45.1, 54.2, and 62.6 for the control, 1 microM, 3 microM, and 10 microM, respectively) and double product (DP: heart rate x LVDP; % of predrug DP: 17.5, 44.9, 56.2, and 64.5 for the control, 1 microM, 3 microM, and 10 microM, respectively) at 30-min reperfusion while decreasing the left ventricular end-diastolic pressure (LVEDP). KR-31761 (10 microM) significantly increased the time to contracture during the ischemic period, whereas it concentration-dependently decreased the lactate dehydrogenase release during reperfusion. All these parameters were significantly reversed by 5-hydroxydecanoate (5-HD, 100 microM) and glyburide (1 microM), selective and nonselective blockers of the mitochondrial K+(ATP) (mitoK+(ATP)) channel and K+(ATP) channel, respectively. In anesthetized rats subjected to 30-min occlusion of left anterior descending coronary artery/2.5-h reperfusion, KR-31761 administered 15 min before the onset of ischemia significantly decreased the infarct size (72.2%, 55.1%, and 47.1% for the control, 0.3 mg/kg, i.v., and 1.0 mg/kg, i.v., respectively); and these effects were completely and almost completely abolished by 5-HD (10 mg/kg, i.v.) and HMR-1098, a selective blocker of sarcolemmal K+(ATP) (sarcK+(ATP)) channel (6 mg/kg, i.v.) administered 5 min prior to KR-31761 (72.3% and 67.9%, respectively). KR-31761 only slightly relaxed methoxamine-precontracted rat aorta (IC50: > 30.0 microM). These results suggest that KR-31761 exerts potent cardioprotective effects through the opening of both mitoK+(ATP) and sarcK+(ATP) channels in rat hearts with a minimal vasorelaxant effect.
Related JoVE Video
Gene transfer of redox factor-1 inhibits neointimal formation: involvement of platelet-derived growth factor-beta receptor signaling via the inhibition of the reactive oxygen species-mediated Syk pathway.
Circ. Res.
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ref-1) in vascular smooth muscle cells has yet to be clearly elucidated. Therefore, we attempted to determine the roles of Ref-1 in the migration induced by platelet-derived growth factor (PDGF)-BB and in its signaling in rat aortic smooth muscle cells (RASMCs). Cellular migration, superoxide (O(2)(-*)) production, Rac-1 activity, and neointima formation were determined in cells transfected with adenoviruses encoding for Ref-1 (AdRef-1) and small interference RNA of Ref-1. Overexpression of Ref-1 induced by treatment with RASMCs coupled with AdRef-1 inhibited the migration induced by PDGF-BB. PDGF-BB also increased the phosphorylation of the PDGFbeta receptor, spleen tyrosine kinase (Syk), mitogen-activated protein kinase, and heat shock protein 27, but these increases were significantly inhibited by AdRef-1 treatment. PDGF-BB increased O(2)(-*) production and Rac-1 activity, and these were diminished in cells transfected with AdRef-1. In contrast, RASMC migration, phosphorylation of Syk and O(2)(-*) production in response to PDGF-BB were increased by the knock down of Ref-1 with small interference RNA. The phosphorylation of PDGFbeta receptor in response to PDGF-BB was inhibited completely by the Syk inhibitor and was partly attenuated by a NADPH oxidase inhibitor. PDGF-BB increased the sprout outgrowth of the aortic ring ex vivo, which was inhibited in the AdRef-1-infected RASMCs as compared with the controls. Balloon injury-induced neointimal formation was significantly attenuated by the gene transfer of AdRef-1. These results indicate that Ref-1 inhibits the PDGF-mediated migration signal via the inhibition of reactive oxygen species-mediated Syk activity in RASMCs.
Related JoVE Video
Morin inhibits Fyn kinase in mast cells and IgE-mediated type I hypersensitivity response in vivo.
Biochem. Pharmacol.
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
Mast cells are responsible for IgE-mediated allergic responses. Although dietary flavonoid morin has been known to suppress mast cell activation, its in vivo anti-allergic activity and the underlying mechanisms remain are largely unknown. In this study, we determine whether morin suppresses IgE-mediated allergic responses in an animal model and its mechanism of action. Morin suppressed IgE-mediated PCA in mice (ED50 23.9 mg/kg) and inhibited degranulation and production of tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-4 in antigen (Ag)-stimulated mast cells. The mechanism of action was a follows. Morin inhibited the activating phosphorylation of spleen tyrosine kinase (Syk) and linker for activation of T cells (LAT) in rat basophilic leukemia (RBL)-2H3 cells and bone marrow-derived mast cells (BMMCs). Akt and the mitogen-activated protein (MAP) kinases, p38, extracellular signal-regulated kinase (ERK)1/2, and c-Jun N-terminal kinase (JNK) were inhibited as well. In vitro kinase assay indicated that Fyn kinase, not Lyn and Syk, was inhibited by morin in a dose-dependent manner (IC50 5.7 microM). In conclusion, the results suggest that morin suppresses the IgE-mediated allergic response by primarily inhibiting Fyn kinase in mast cells.
Related JoVE Video
DJ-1/park7 protects against neointimal formation via the inhibition of vascular smooth muscle cell growth.
Cardiovasc. Res.
Show Abstract
Hide Abstract
DJ-1/park7 is a ubiquitously expressed multifunctional protein that plays essential roles in a variety of cells. However, its function in the vascular system has not been determined. We investigated the protective roles of DJ-1/park7 in vascular disorders, especially in neointimal hyperplasia.
Related JoVE Video
DJ-1 regulates mast cell activation and IgE-mediated allergic responses.
J. Allergy Clin. Immunol.
Show Abstract
Hide Abstract
DJ-1 is an antioxidant protein known to reduce levels of reactive oxygen species (ROS), but its presence or function in mast cells and allergic diseases is unknown.
Related JoVE Video
Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells.
Int. J. Oncol.
Show Abstract
Hide Abstract
Sirtuins (SIRTs), NAD+-dependent class III histone deacetylases (HDACs), play an important role in the regulation of cell division, survival and senescence. Although a number of effective SIRT inhibitors have been developed, little is known about the specific mechanisms of their anticancer activity. In this study, we investigated the anticancer effects of sirtinol, a SIRT inhibitor, on MCF-7 human breast cancer cells. Apoptotic and autophagic cell death were measured. Sirtinol significantly inhibited the proliferation of MCF-7 cells in a concentration-dependent manner. The IC50 values of sirtinol were 48.6 µM (24 h) and 43.5 µM (48 h) in MCF-7 cells. As expected, sirtinol significantly increased the acetylation of p53, which has been reported to be a target of SIRT1/2. Flow cyto-metry analysis revealed that sirtinol significantly increased the G1 phase of the cell cycle. The upregulation of Bax, downregulation of Bcl-2 and cytochrome c release into the cytoplasm, which are considered as mechanisms of apoptotic cell death, were observed in the MCF-7 cells treated with sirtinol. The annexin V-FITC assay was used to confirm sirtinol-induced apoptotic cell death. Furthermore, the expression of LC3-II, an autophagy-related molecule, was significantly increased in MCF-7 cells after sirtinol treatment. Autophagic cell death was confirmed by acridine orange and monodansylcadaverine (MDC) staining. Of note, pre-treatment with 3-methyladenine (3-MA) increased the sirtinol-induced MCF-7 cell cytotoxicity, which is associated with blocking autophagic cell death and increasing apoptotic cell death. Based on our results, the downregulation of SIRT1/2 expression may play an important role in the regulation of breast cancer cell death; thus, SIRT1/2 may be a novel molecular target for cancer therapy and these findings may provide a molecular basis for targeting SIRT1/2 in future cancer therapy.
Related JoVE Video
Bioassay-guided isolation of novel compound from Paeonia suffruticosa Andrews roots as an IL-1? inhibitor.
Arch. Pharm. Res.
Show Abstract
Hide Abstract
The inhibition of Interleukin-1beta (IL-1?) is of substantial interest for the treatment of rheumatoid arthritis. Using an in vitro assay with RAW 264.7 cells, oxo-acetic acid 2-ethoxy-4-(3-hydroxy-2-oxopropyl) phenyl ester (1) was isolated from the roots of Paeonia suffruticosa Andrews as an inhibitor of IL-1? with an IC(50) value of 56 ?M. Compound 1 is a novel phenylesteric compound from P. suffruticosa Andrews. Compound 1 was shown to inhibit the production of pro-inflammatory cytokines in RAW 264.7 cells. Thus, a possible new action of novel compound is provided explaining the anti-rheumatoid arthritic properties of P. suffruticosa Andrews.
Related JoVE Video
Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages.
Nat. Prod. Res.
Show Abstract
Hide Abstract
We isolated a sesquiterpene lactone from the methanol extract of the roots of Cosmos bipinnatus, namely, MDI (a mixture of dihydrocallitrisin and isohelenin). The anti-inflammatory activity of MDI was evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. MDI significantly inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2. Consistent with these results, the production of NO and prostaglandin E2 (PGE2) was suggested to be suppressed by MDI in a concentration-dependent manner (IC50 value was 0.94 and 2.88?µg?mL(-1) for NO and PGE2, respectively). In addition, MDI significantly inhibited the expressions of pro-inflammatory cytokines such as IL-1?, IL-6, IFN-? and TNF-?. Furthermore, MDI attenuated DNA-binding activity of NF-?B by inhibiting the phosphorylation of I?B. These results indicate that MDI isolated from the roots of C. bipinnatus shows anti-inflammatory activity in LPS-stimulated murine macrophages by modulating the NF-?B pathway.
Related JoVE Video
Syk/Src pathway-targeted inhibition of skin inflammatory responses by carnosic acid.
Mediators Inflamm.
Show Abstract
Hide Abstract
Carnosic acid (CA) is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS) and retinoic acid (RA). In addition, CA blocked the release of nitric oxide (NO), tumor necrosis factor (TNF)-?, and prostaglandin E? (PGE?) from RAW264.7 cells activated by the toll-like receptor (TLR)-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN) and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS). CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF)-?B and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K), Akt, inhibitor of ?B? (I?B?) kinase (IKK), and I?B? for NF-?B activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-?B inhibitory properties.
Related JoVE Video
Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions.
Cell. Immunol.
Show Abstract
Hide Abstract
Foxp3-expressing cells among CD19(+)CD5(+) B cells were identified as regulatory B cells. Food allergy manifesting as late eczematous reactions is regarded as a non-IgE-mediated food allergy. The diagnosis for milk allergy manifesting as late eczematous reactions was made on the basis of the findings obtained from a double-blind placebo-controlled food challenge in patients with atopic dermatitis. Twelve patients with milk allergy and 12 patients who could tolerate milk were selected. On casein stimulation, the CD19(+)CD5(+)Foxp3(+) B cell (Breg) fraction in CD5(+) B cells decreased from 4.4±1.1% to 3.1±0.7% (P=0.047, n=12) in the milk allergy group and increased from 4.4±1.3% to 5.2±1.4% (P=0.001, n=10) in the milk-tolerant group. On the other hand, on allergen stimulation, the number of CD4(+)Foxp3(+) regulatory T cells (Tregs) in the milk allergy group and milk-tolerant group increased from 2.6±0.7% to 3.4±0.6% (P=0.014, n=9) and from 2.7±1.0% to 3.5±1.0% (P=0.038, n=10), respectively. In conclusion, allergen-specific responses of Bregs, rather than those of Tregs, seem to influence the immune responses (i.e., allergy or tolerance) to a food allergen.
Related JoVE Video
Arctigenin suppresses receptor activator of nuclear factor ?B ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.
Eur. J. Pharmacol.
Show Abstract
Hide Abstract
Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor ?B ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLC?2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis.
Related JoVE Video
Tolerogenic effects of interferon-gamma with induction of allergen-specific interleukin-10-producing regulatory B cell (Br1) changes in non-IgE-mediated food allergy.
Cell. Immunol.
Show Abstract
Hide Abstract
In this study, specific oral tolerance induction using interferon-gamma (IFN-?) could successfully treat food allergies. Allergen-specific IL-10-producing regulatory B cell (Br1) responses are characteristic in immune tolerance of food allergies. The in-vivo effects of IFN-? on allergen-induced changes in Br1 proportion and numbers in food allergies were investigated. Oral food challenges were conducted and 20 allergic patients to cows milk were selected. Of these 20 patients, five were treated with IFN-? and milk (SOTI group), five were treated with only milk, five were treated with only IFN-?, and five did not receive any treatment. In addition, 10 milk-tolerant subjects were involved in this study. Peripheral blood mononuclear cells (PBMCs) were stimulated using casein and stained for CD5, CD19, annexin V, and IL-10 before and after treatment. Allergy tolerance was induced only in the SOTI group along with induction of allergen-induced Br1 changes. Thus, IFN-? can show tolerogenic effects in vivo when introduced with an allergen, which may be at least partly due to its effect on allergen-induced Br1 responses.
Related JoVE Video
Antiallergic activity of novel isoflavone methyl-glycosides from Cordyceps militaris grown on germinated soybeans in antigen-stimulated mast cells.
J. Agric. Food Chem.
Show Abstract
Hide Abstract
Isoflavones are known to possess immunomodulating and antiallergic activities. Previously we identified novel isoflavone methyl-glycosides (daidzein 7-O-?-d-glucoside 4?-O-methylate (CDGM), glycitein 7-O-?-D-glucoside 4?-O-methylate (CGLM), genistein 7-O-?-D-glucoside 4?-O-methylate (CGNMI) and genistein 4-O-?-D-glucoside 4?-O-methylate (CGNMII)) from Cordyceps militaris grown on germinated soybeans (GSC). The biological activity of novel isoflavone methyl-glycosides, however, remains unknown. In this study, CGNMII showed the strongest inhibition of degranulation. Additionally, the release of interleukin (IL)-4 and tumor necrosis factor (TNF)-? was decreased by CGNMII in antigen-stimulated RBL-2H3 cells. To elucidate the antiallergic mechanism of CGNMII, we examined whether it affected levels of signaling molecules responsible for degranulation. The levels of activated Lyn, Syk, PLC?1 and LAT proteins were reduced in CGNMII treated RBL-2H3 cells. CGNMII also inhibited the activation of AKT and ERK1/2 proteins. These results suggest that CGNMII might be used as a therapeutic agent for allergic diseases.
Related JoVE Video
Anti-inflammatory effects of ?-sitosterol-?-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages.
Nat. Prod. Res.
Show Abstract
Hide Abstract
Trachelospermum jasminoides (Apocynaceae) has pharmacological effects that include anti-inflammatory, anti-bacterial and anti-viral activities, which have been observed from various studies. Of these pharmacological effects, the anti-inflammatory capacity of compounds from T. jasminoides is not yet known exactly. In this study, we investigated the compound that can be used for the suppression of lipopolysacchaide (LPS) stimulated inflammatory responses in macrophages among the five isolated compounds. ?-sitosterol-?-D-glucoside (1) was found to reduce nitric oxide (NO) production from LPS-induced RAW 264.7 cells the most. In addition, compound 1 strongly inhibited the interleukin 6 (IL-6) activities of stimulated macrophages. Treatment of RAW 264.7 cells with compound 1 reduced secretion of inflammatory elements including tumour necrosis factor - alpha (TNF-?) and interleukin 1 beta (IL-1?). Thus, compound 1 may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.
Related JoVE Video
Verification of the interdomain contact site in the inactive monomer, and the domain-swapped fold in the active dimer of Hsp33 in solution.
FEBS Lett.
Show Abstract
Hide Abstract
Upon dimerization by oxidation, Hsp33 functions as a molecular chaperone in prokaryotes. Previously published structures of both the inactive and active species are of doubtful relevance to the solution conformations since the inactive (reduced) crystal structure was dimeric, while the active (oxidized) species was crystallized with a truncation of its regulation domain. The interdomain contact site of the inactive monomer, identified in this work, is consistent with that previously observed in the reduced dimer crystal. In contrast, fluorescence quenching of the active dimer contradicted the results expected from the domain-swapped fold observed in the truncated dimer crystal. The results of this study provide important new information concerning controversial issues in the activation process of Hsp33.
Related JoVE Video
Comparisons of polybrominated diphenyl ethers levels in paired South Korean cord blood, maternal blood, and breast milk samples.
Chemosphere
Show Abstract
Hide Abstract
Polybrominated diphenyl ethers (PBDEs), commonly used flame retardants, have been reported as potential endocrine disruptor and neurodevelopmental toxicants, thus giving rise to the public health concern. The goal of this study was to investigate the relationship between umbilical cord blood, maternal blood, and breast milk concentrations of PBDEs in South Korean. We assessed PBDE levels in paired samples of umbilical cord blood, maternal blood, and breast milk. The levels of seven PBDE congeners were measured in 21 paired samples collected from the Cheil Womans Hospital (Seoul, Korea) in 2008. We also measured thyroid hormones levels in maternal and cord blood to assess the association between PBDEs exposure and thyroid hormone levels. However, there was no correlation between serum thyroxin (T4) and total PBDEs concentrations. The total PBDEs concentrations in the umbilical cord blood, maternal blood, and breast milk were 10.7±5.1 ng g(-1) lipid, 7.7±4.2 ng g(-1) lipid, and 3.0±1.8 ng g(-1) lipid, respectively. The ranges of total PBDE concentrations observed were 2.28-30.94 ng g(-1) lipid in umbilical cord blood, 1.8-17.66 ng g(-1) lipid in maternal blood, and 1.08-8.66 ng g(-1) lipid in breast milk. BDE-47 (45-73% of total PBDEs) was observed to be present dominantly in all samples, followed by BDE-153. A strong correlation was found for major BDE-congeners between breast milk and cord blood or maternal blood and cord blood samples. The measurement of PBDEs concentrations in maternal blood or breast milk may help to determine the concentration of PBDEs in infant.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.