JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Thrombin as important factor for cutaneous wound healing - Comparison of fibrin biomatrices in vitro and in a rat excisional wound healing model.
Wound Repair Regen
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Fibrin biomatrices have been used for many years for hemostasis and sealing and are a well-established surgical tool. The objective of the present study was to compare two commercially available fibrin biomatrices regarding the effect of their thrombin concentration on keratinocytes and wound healing in vitro and in vivo. Keratinocytes showed significant differences in adhesion, viability and morphology in the presence of the fibrin matrices in vitro. A high thrombin concentration (800-1200 IU/ml) caused deteriorated cell compatibility. By using a thrombin inhibitor, those differences could be reversed. In a rat excisional wound healing model, we observed more rapid wound closure and less wound severity in wounds treated with a fibrin matrix containing a lower concentration of thrombin (4 IU/ml). Furthermore, fewer new functional vessels and a lower level of VEGF were measured in wounds after seven days treated with the matrix with higher thrombin concentration. These in vivo results may be partially explained by the in vitro biocompatibility data. Additionally, Results show that low thrombin biomatrices were degraded faster than the high thrombin material. Hence we conclude that the composition of fibrin biomatrices influences keratinocytes and therefore has an impact on wound healing.
Related JoVE Video
Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis.
Cells Tissues Organs (Print)
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an anterior and a posterior end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the left side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells.
Related JoVE Video
Peptide Bbeta(15-42) preserves endothelial barrier function in shock.
PLoS ONE
PUBLISHED: 01-12-2009
Show Abstract
Hide Abstract
Loss of vascular barrier function causes leak of fluid and proteins into tissues, extensive leak leads to shock and death. Barriers are largely formed by endothelial cell-cell contacts built up by VE-cadherin and are under the control of RhoGTPases. Here we show that a natural plasmin digest product of fibrin, peptide Bbeta15-42 (also called FX06), significantly reduces vascular leak and mortality in animal models for Dengue shock syndrome. The ability of Bbeta15-42 to preserve endothelial barriers is confirmed in rats i.v.-injected with LPS. In endothelial cells, Bbeta15-42 prevents thrombin-induced stress fiber formation, myosin light chain phosphorylation and RhoA activation. The molecular key for the protective effect of Bbeta15-42 is the src kinase Fyn, which associates with VE-cadherin-containing junctions. Following exposure to Bbeta15-42 Fyn dissociates from VE-cadherin and associates with p190RhoGAP, a known antagonists of RhoA activation. The role of Fyn in transducing effects of Bbeta15-42 is confirmed in Fyn(-/-) mice, where the peptide is unable to reduce LPS-induced lung edema, whereas in wild type littermates the peptide significantly reduces leak. Our results demonstrate a novel function for Bbeta15-42. Formerly mainly considered as a degradation product occurring after fibrin inactivation, it has now to be considered as a signaling molecule. It stabilizes endothelial barriers and thus could be an attractive adjuvant in the treatment of shock.
Related JoVE Video
High thrombin concentrations in fibrin sealants induce apoptosis in human keratinocytes.
J Biomed Mater Res A
Show Abstract
Hide Abstract
Over the last century many studies have been performed to assess the impact of fibrin sealant (FS) components on cells. Because of the noncovalent bonding of thrombin to fibrin during fibrin clot formation, we wanted to further evaluate the impact of fibrin bound thrombin on cell viability. Initially, we quantified the activity of thrombin in three different, commercially available FS. This information was used to prepare fibrin clots covering a range of thrombin concentrations from 4 to 820 IU mL(-1), but which were identical with respect to all other constituents. Although these fibrin clots did not differ in their three-dimensional structure, clots prepared with highly concentrated thrombin (820 IU mL(-1)) failed to support adhesion and spreading of primary human keratinocytes (NHEK). The number of attached cells was also significantly reduced on high thrombin activity clots. We hypothesized that these observations are not only the consequence of decreased proliferation but of apoptotic mechanisms, since the expression of cleaved caspase 3 and 7 was strongly enhanced on fibrin clots with high thrombin activity. This was accompanied by an induction of expression of Trail-R2 which is a receptor known to mediate apoptosis signals. Blocking of thrombin activity by hirudin led to an improvement of cell morphology and to an increase in number of attached cells. In addition, the induction of caspase 3 and 7 was also reduced. Thus, here we report for the first time that fibrin bound thrombin does not only decrease proliferation (as already published by others), it also does induce NHEK apoptosis when present at high concentrations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.