JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Low molecular weight heparin improves proteinuria in rats with L-NAME induced preeclampsia by decreasing the expression of nephrin, but not podocin.
Hypertens Pregnancy
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Objective: We investigated the relationship between proteinuria in L-NAME induced preeclampsia and the expression of nephrin and podocin, and the effect of low-molecular-weight-heparin (LMWH) on proteinuria in rats. Methods: We detected nephrin and podocin expression of kidneys of pregnant rats after L-NAME and after LMWH intervening pregnant rats. Results: Glomerular nephrin expression in L-NAME induced preeclampsia significantly decreased, but not podocin. Nephrin was relatively increased after LMWH intervention and this was accompanied by a decrease in proteinuria. Conclusion: We demonstrate that down-regulation of nephrin is involved in L-NAME induced proteinuria, and that LMWH reduces proteinuria by up-regulation of neprhin.
Related JoVE Video
Hollandites as a new class of multiferroics.
Sci Rep
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn(4+) and Mn(3+) in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120?K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100?MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials.
Related JoVE Video
The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation.
J. Cell Biol.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
Organisms have evolved elaborate mechanisms to adjust intracellular nutrient levels in response to fluctuating availability of exogenous nutrients. During starvation, cells can enhance amino acid uptake and synthesis through the general amino acid control (GAAC) pathway, whereas nonessential cellular contents are recycled by autophagy. How these two pathways are coordinated in response to starvation is currently unknown. Here we show that the GAAC pathway couples exogenous amino acid availability with autophagy. Starvation caused deactivation of mTOR, which then activated autophagy. In parallel, serum/glutamine starvation activated the GAAC pathway, which up-regulated amino acid transporters, leading to increased amino acid uptake. This elevated the intracellular amino acid level, which in turn reactivated mTOR and suppressed autophagy. Knockdown of activating transcription factor 4, the major transcription factor in the GAAC pathway, or of SLC7A5, a leucine transporter, caused impaired mTOR reactivation and much higher levels of autophagy. Thus, the GAAC pathway modulates autophagy by regulating amino acid uptake and mTOR reactivation during serum/glutamine starvation.
Related JoVE Video
Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.
Chem. Commun. (Camb.)
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.
Related JoVE Video
Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution.
BMC Evol. Biol.
PUBLISHED: 06-03-2014
Show Abstract
Hide Abstract
The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. These proteins may be involved in many cellular and biological processes coupled closely to the synthesis, degradation, or stability of oil bodies. Although previous studies of this protein family have been reported for Arabidopsis and other species, understanding of the evolution of the caleosin gene family in plants remains inadequate.
Related JoVE Video
[A survey of vision-related quality of life in patients with exudative age-related macular degeneration].
Zhonghua Yan Ke Za Zhi
PUBLISHED: 05-21-2014
Show Abstract
Hide Abstract
To evaluate the vision-related quality of life in patients with exudative age-related macular degeneration (AMD).
Related JoVE Video
[Reconstruction of facial defects with frontal expanded flaps bipedicled by superficial temple vessels and supraorbital/supratrochlear neurovascular bundles].
Zhonghua Zheng Xing Wai Ke Za Zhi
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
To investigate the therapeutic effect of reconstruction of facial defects with frontal expanded flaps bipedicled by superficial temple vessels and supraorbital/supratrochlear neurovascular bundles.
Related JoVE Video
Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies.
BMC Plant Biol.
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, ?-expansin (EXPA), ?-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited.
Related JoVE Video
Molecular mechanisms that restrict yeast centrosome duplication to one event per cell cycle.
Curr. Biol.
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
The spindle pole body (SPB) of budding yeast is the functional equivalent of the mammalian centrosome. Like the centrosome, the SPB duplicates once per cell cycle. The new SPB assembles adjacent to the mother SPB at a substructure called the bridge. The half-bridge, the bridge precursor, is a one-sided extension of the SPB central plaque layered on both sides of the nuclear envelope. Parallel Sfi1 molecules longitudinally span the half-bridge with their N termini embedded in the SPB central plaque, whereas their C termini mark the half-bridge distal end. In early G1, half-bridge elongation by antiparallel C-to-C dimerization of Sfi1 exposes free N-Sfi1 where the new SPB assembles. After SPB duplication, the dimerized Sfi1 is severed to allow spindle formation and SPB reduplication.
Related JoVE Video
Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries.
J Proteomics
PUBLISHED: 02-16-2014
Show Abstract
Hide Abstract
In this study, a proteomic approach was utilized to identify differentially accumulated proteins in developing wheat ovaries before and after fertilization and in response to water deficit. Proteins were extracted, quantified, and resolved by 2-DE at pH4-7. Statistical analysis of spot intensity was performed by using principal component analysis and samples were clustered by using Euclidean distance. In total, 136 differentially accumulated protein spots representing 88 unique proteins were successfully identified by MALDI-TOF/TOF MS. Under normal conditions, stress-related proteins were abundant in unfertilized ovaries while proteins involved in the metabolism of energy and matter were enriched in fertilized ovaries just 48h after fertilization. Similar trends were observed in unfertilized and fertilized wheat ovaries under water deficit conditions, except for increased accumulation of stress-related proteins in fertilized ovaries. Some proteins required for normal development were not present in ovaries subjected to water deficit. Our comprehensive results provide new insights into the biochemical mechanisms involved in ovary development before and after fertilization and in tolerance to water deficit.
Related JoVE Video
The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure.
Environ Sci Pollut Res Int
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H(+) and Al(3+) and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg(-1)soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H(+) and Al(3+). Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.
Related JoVE Video
Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC) and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC) lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL) have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.
Related JoVE Video
Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors.
Dalton Trans
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
A novel flower-on-sheet hierarchical morphology of ?-Co(OH)2 nanostructures was achieved via an easy two-step synthesis strategy. The method is based on first a galvanostatic electrodeposition (GE) of vertically aligned interconnected Co(OH)2 nanosheets to form a branch layer and second a potentiostatic electrodeposition (PE) of Co(OH)2 microflowers on the obtained branch layer from the secondary growth of their sheet-like precursors. The formation mechanism of this special PE time-dependent nanostructure was proposed and their morphology-dependent supercapacitor properties were also investigated. For a given areas mass loading, high specific capacitances of 1822 F g(-1) have been achieved for the electrode obtained after 200 s GE followed by a 300 s PE in a three-electrode configuration, and it maintained 91% of its initial capacity after 1000 constant-current charge/discharge cycles. Even when the discharge current density was increased from 1 to 50 mA cm(-2), the capacitance was still as high as 1499 F g(-1), indicating an excellent rate performance of the fabricated electrodes. The high performances of the electrodes are attributed to the special porous structure, 3D hierarchical morphology, vertical aligned orientation, and low contact resistance between active material and charge collector.
Related JoVE Video
The identification of hotspots of heavy metal pollution in soil-rice systems at a regional scale in eastern China.
Sci. Total Environ.
PUBLISHED: 07-31-2013
Show Abstract
Hide Abstract
Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316mgkg(-1) for Cd, 47.3mgkg(-1) for Cu, 31.7mgkg(-1) for Ni and 131mgkg(-1) for Zn, and the metal concentrations in rice grain were 0.132mgkg(-1) for Cd, 2.46mgkg(-1) for Cu, 0.223mgkg(-1) for Ni and 17.4mgkg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Morans I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into account to control soil pollution and to curtail metal contamination to the food chain in the areas of Wenling, which were the most polluted by toxic metals.
Related JoVE Video
Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors.
ACS Appl Mater Interfaces
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.
Related JoVE Video
The antiangiogenic activity of a soluble fragment of the VEGFR extracellular domain.
Biomed. Pharmacother.
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of pathological angiogenesis and vascular permeability and overexpressed by most solid tumors. VEGF receptor-2 (VEGFR-2 or kinase-insert domain-containing receptor as it is called in human, KDR) is a specific receptor of VEGF with a high binding affinity. A solube recombinant extracellular domain 1-3 of human VEGFR-2 (rKDR1-3) was expressed in Escherichia coli (E. Coli) and purified from the bacterial periplasmic extracts by immobilized metal affinity chromatography and anion exchange chromatography to inhibit the VEGF-induced angiogenesis. A surface plasmon resonance (SPR) technology was adopted to analyze the affinity and kinetics constant between rKDR1-3 and VEGF165. Under the given experimental conditions, the association rate constant Ka was 1.06×10(5)M(-1) S(-1), the dissociation rate Kd was 6.09×10(-3) S(-1), the dissociation constant KD was 5.74×10(-8)M. The effect of rKDR1-3 on VEGF-induced endothelial cell proliferation was studied using MTT assay, scratch-wound healing assay and chorioallantoic membrane (CAM) assay. The results showed that rKDR1-3 could inhibit neovascularization and serve as a useful drug candidate in research, diagnostics and therapy of cancer.
Related JoVE Video
Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion.
Mol. Cancer Ther.
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
CUDC-101 is a novel, small-molecule, anticancer agent targeting histone deacetylase (HDAC), EGF receptor (EGFR), and HER2. It is currently in phase I clinical development in patients with solid tumors. Previously, we reported that CUDC-101 has potent antiproliferative and proapoptotic activity in cultured tumor cells and in vivo xenograft models. We now show that cancer cells that have acquired resistance to single-target EGFR inhibitors through upregulation of AXL or loss of E-cadherin remain sensitive to CUDC-101, which inhibits MET- and AXL-mediated signaling, restores E-cadherin expression, and reduces cell migration. CUDC-101 also efficiently inhibited the proliferation of MET-overexpressing non-small cell lung cancer and gastric cancer cell lines and inhibited the migration and invasion of invasive tumor cells. Taken together, these results suggest that coupling HDAC and HER2 inhibitory activities to an EGFR inhibitor may potentially be effective in overcoming drug resistance and preventing cancer cell migration.
Related JoVE Video
Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.
Oncol Lett
PUBLISHED: 03-01-2013
Show Abstract
Hide Abstract
The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8(+) T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.
Related JoVE Video
Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis.
Sci. Total Environ.
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Vegetable fields near villages in China are suffering increasing heavy metal damages from various pollution sources including agriculture, traffic, mining and Chinese typical local private family-sized industry. 268 vegetable samples which included rape, celery, cabbages, carrots, asparagus lettuces, cowpeas, tomatoes and cayenne pepper and their corresponding soils in three economically developed areas of Zhejiang Province, China were collected, and the concentrations of five heavy metals (Pb, Cd, Cr, Hg and As) in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency (US EPA) were employed to explore the potential health hazards of heavy metals in soils growing vegetables. Results showed that heavy metal contaminations in investigated vegetables and corresponding soils were significant. Pollution levels varied with metals and vegetable types. The highest mean soil concentrations of heavy metals were 70.36 mg kg(-1) Pb, 47.49 mg kg(-1) Cr, 13.51 mg kg(-1) As, 0.73 mg kg(-1) for Cd and 0.67 mg kg(-1) Hg, respectively, while the metal concentrations in vegetables and corresponding soils were poorly correlated. The health risk assessment results indicated that diet dominated the exposure pathways, so heavy metals in soil samples might cause potential harm through food-chain transfer. The total non-cancer and cancer risk results indicated that the investigated arable fields near industrial and waste mining sites were unsuitable for growing leaf and root vegetables in view of the risk of elevated intakes of heavy metals adversely affecting food safety for local residents. Chromium and Pb were the primary heavy metals posing non-cancer risks while Cd caused the greatest cancer risk. It was concluded that more effective controls should be focused on Cd and Cr to reduce pollution in this study area.
Related JoVE Video
Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells.
Acta Biomater
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Polyvinylpyrrolidone-iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP-I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP-I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP-I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP-I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP-I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP-I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP-I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP-I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80±1.64 vs. 3.8±2.19, p<0.05). The biocompatibility and pro-osteogenic activity of PVP-I on the cells from joint tissue and the enhanced subchondral bone formation in PVP-I treated scaffolds would thus indicate the potential of PVP-I for osteochondral defect repair.
Related JoVE Video
Periplasmic expression optimization of VEGFR2 D3 adopting response surface methodology: antiangiogenic activity study.
Protein Expr. Purif.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Vascular endothelial growth factor (VEGF) is one of the most significant mediators of angiogenesis, which interacts with a specific membrane receptor: VEGF receptor 2 (VEGFR2). Studies elsewhere have shown that, a VEGF-blocker can regulate several vital processes of tumor promotion. However, there is no literature evidence of investigation on antiangiogenic ability of single domain 3 of VEGFR-2 (VEGFR2 D3), as the key domain in signal transduction of VEGF. In this article, we aimed at developing an efficient method for producing soluble form of this receptor as therapeutic applications. The optimization of the production of soluble VEGFR2 D3 in Escherichia coli was firstly done by testing the periplasmic expression in different expression systems using three osmotic shock methods. To enhance the yield, vital factors were selected from nine factors by Plackett-Burman design and the level of each viral factor was optimized via a response surface methodology based central composite design. After purification and identification of the protein, the bioactivity assays: quantitative ELISA, VEGF-induced proliferation and in vivo chick chorioallantoic membrane assay were employed in our study. The outcome showed that, E. coli Rosetta-gami (DE3)/pET22b-VEGFR2 D3 was the most effective expression system. Furthermore, the inducing time, peptone and glycerol concentration affected the periplasmic expression of VEGFR2 D3 significantly. The corresponding level was also optimized. The bioactivity assay studies showed VEGFR2 D3 could suppress both VEGF stimulated cell proliferation in vitro and neovascularization in vivo. We have therefore provided a novel antiangiogenic drug candidate relating to VEGF-VEGFR2 pathway.
Related JoVE Video
Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles.
Opt Express
PUBLISHED: 11-24-2011
Show Abstract
Hide Abstract
The optical absorption enhancement in thin film organic solar cells (OSCs) with plasmonic metal nanoparticles (NPs) has been studied by means of finite element method with a three-dimension model. It is found that significant plasmonic enhancement of above 100% can be obtained by introducing Ag-NPs at the interface between P3HT:PCBM active layer and PEDOT:PSS anode layer. This enhancement is even larger than that with Ag-NPs totally embedded in the P3HT:PCBM active layer of thin film OSCs. Furthermore, the enhancement mechanism of Ag-NPs at different positions of thin film OSCs is investigated.
Related JoVE Video
Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats.
J. Clin. Invest.
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
Brain injury after focal cerebral ischemia, the most common cause of stroke, develops from a series of pathological processes, including excitotoxicity, inflammation, and apoptosis. While NMDA receptors have been implicated in excitotoxicity, attempts to prevent ischemic brain damage by blocking NMDA receptors have been disappointing. Disruption of neuroprotective pathways may be another avenue responsible for ischemic damage, and thus preservation of neuronal survival may be important for prevention of ischemic brain injury. Here, we report that suppression of proteolytic degradation of transient receptor potential canonical 6 (TRPC6) prevented ischemic neuronal cell death in a rat model of stroke. The TRPC6 protein level in neurons was greatly reduced in ischemia via NMDA receptor-dependent calpain proteolysis of the N-terminal domain of TRPC6 at Lys¹?. This downregulation was specific for TRPC6 and preceded neuronal death. In a rat model of ischemia, activating TRPC6 prevented neuronal death, while blocking TRPC6 increased sensitivity to ischemia. A fusion peptide derived from the calpain cleavage site in TRPC6 inhibited degradation of TRPC6, reduced infarct size, and improved behavioral performance measures via the cAMP response element-binding protein (CREB) signaling pathway. Thus, TRPC6 proteolysis contributed to ischemic neuronal cell death, and suppression of its degradation preserved neuronal survival and prevented ischemic brain damage.
Related JoVE Video
3D pharmacophore based virtual screening of A 2A adenosine receptor antagonists.
Protein Pept. Lett.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
A(2A) adenosine receptor (A(2A)AR) antagonists are considered to be useful in cancer immunotherapy and vaccines and as potential drugs for the treatment of Parkinsons disease. To better understand the chemical features responsible for the recognition mechanism and the receptor-ligand interaction, we performed the molecular docking study using selective A(2A)AR antagonists and combined with a pharmacophore based virtual library screening. The putative binding mode for the antagonists served as the templates for pharmacophore modeling and a virtually generated library have been screened for novel A(2A)AR antagonist development.
Related JoVE Video
Assisted sonodynamic damage of bovine serum albumin by metronidazole under ultrasonic irradiation combined with photosensitive antitumor drug-Amsacrine.
J. Photochem. Photobiol. B, Biol.
PUBLISHED: 09-16-2009
Show Abstract
Hide Abstract
By research, it was found that the Amsacrine (AMSA) can interact with bovine serum albumin (BSA). In this work, the AMSA was adopted as a sonosensitizer and the Metronidazole (MET) was used as a sensitizer to further damage BSA molecules under ultrasonic irradiation. It could be concluded that the damage degree of BSA molecules in the presence of AMSA and MET was more serious than in the presence of pure AMSA. That is, MET could aggravate the damage to BSA molecules under ultrasonic irradiation combined with AMSA. Meanwhile, the damage degree of BSA molecules was also influenced by some factors, such as ultrasonic irradiation time, MET concentration and solution acidity. In addition, the damage site of BSA molecules was estimated by synchronous fluorescence spectra. It was found that the tyrosine (Tyr) and tryptophan (Typ) residues were damaged almost averagely. Perhaps, these research results are of great significance for driving sonodynamic method to treat tumor in clinic application.
Related JoVE Video
Functional roles of TRPC channels in the developing brain.
Pflugers Arch.
PUBLISHED: 08-19-2009
Show Abstract
Hide Abstract
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels formed by homomeric or heteromeric complexes of TRPC proteins that contain six transmembrane domains. These channels can be activated through a phospholipase-C-dependent mechanism, making them sensors for environmental cues. Their expression begins early in embryonic days and remains in adulthood. These channels have important roles in the processes of neuronal development, including neural stem cell proliferation, cerebellar granule cell survival, axon path finding, neuronal morphogenesis, and synaptogenesis. In this review, we will discuss functional implications of TRPC channels during brain development.
Related JoVE Video
Molecular docking study of A(3) adenosine receptor antagonists and pharmacophore-based drug design.
Neurochem. Int.
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Adenosine is known to act as a neuromodulator by suppressing synaptic transmission in the central and peripheral nervous system. A(3) adenosine receptor (A(3)AR) antagonists were recently considered as potential drugs for the treatment of cardiac ischemia and inflammation diseases. To better understand the chemical features responsible for the recognition mechanism and the receptor-ligand interaction, we have performed the molecular simulation study combined with a virtual library screening process to develop novel A(3)AR antagonists. A series of A(3)AR selective antagonists, including triazolopurines, imidazopurines, pyrrolopurines, and quinazolines were employed to dock into the A(3)AR binding site via AUTODOCK software. The putative binding mode for each compound was proposed. Three main hydrophobic pockets, one hydrogen bonding with Asn250, and one pi-pi interaction with Phe168 for all antagonists were identified. The most favorable binding conformations served as the templates for pharmacophore modeling with Catalyst 4.11 and a virtually generated library have been screened for novel antagonist development.
Related JoVE Video
TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity.
J. Neurochem.
Show Abstract
Hide Abstract
Excitotoxicity induced by NMDA receptor-mediated intracellular Ca(2+) ([Ca(2+) ](i)) overload is a major cause of delayed neuronal death in cerebral ischemia. Transient receptor potential canonical (TRPC) 6 protects neurons from ischemic brain damage. However, the mechanisms by which TRPC6 protects neurons are largely unknown. Here, we reported that TRPC6 suppressed the [Ca(2+)](i) elevation induced by NMDA and protected neurons from excitotoxicity. Over-expressing or down-regulating TRPC6 suppressed or aggravated Ca(2+) overload under excitotoxicity, respectively. TRPC6 protected cultured neurons from damage caused by NMDA toxicity or oxygen glucose deprivation (OGD). Moreover, the infarct volume in TRPC6 transgenic (Tg) mice was smaller than that in wild-type (WT) littermates. The TRPC6 Tg mice had better behavior performance and lower mortality than their WT littermates. Thus, TRPC6 inhibited NMDA receptor-triggered neurotoxicity and protected neurons from ischemic brain damage. Increase in TRPC6 activity could be a potential strategy for stroke prevention and therapy.
Related JoVE Video
Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression.
Stem Cells Dev.
Show Abstract
Hide Abstract
Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.