JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
NGX6a is degraded through a proteasome-dependent pathway without ubiquitination mediated by ezrin, a cytoskeleton-membrane linker.
J. Biol. Chem.
PUBLISHED: 11-08-2014
Show Abstract
Hide Abstract
Our previous study demonstrated that the NGX6b gene acts as a suppressor in the invasion and migration of nasopharyngeal carcinoma (NPC). Recently we identified the novel isoform NGX6a which is longer than NGX6b. In this study, we firstly found that NGX6a was degraded in NPC cells and that this degradation was mediated by ezrin, a linker between membrane proteins and the cytoskeleton. Specific siRNAs against ezrin increase the protein level of NGX6a in these cells. During degradation, NGX6a is not ubiquitinated but is degraded through a proteasome-dependent pathway. The distribution pattern of ezrin was negatively associated with NGX6a in an immunochemistry (IHC) analysis of a nasopharyngeal carcinoma tissue microarray (TMA) and fetus multiple organ tissues and western blot analysis in nasopharyngeal (NP) and NPC cell lines, suggesting that ezrin and NGX6a are associated and are involved in the progression and invasion of NPC. By mapping the interacting binding sites, the seven-trans-membrane domain of NGX6a was found to be the critical region for the degradation of NGX6a, and the amino-terminus of ezrin is required for the induction of NGX6a degradation. The knockdown of ezrin or transfection of the NGX6a mutant CO, which has an EGF-like domain and a trans-membrane 1 domain, resulted in no degradation, significantly reducing the ability of invasion and migration of NPC cells. This study provides a novel molecular mechanism for the low expression of NGX6a in NPC cells and an important molecular event in the process of invasion and metastasis of nasopharyngeal carcinoma cells.
Related JoVE Video
Nonbeneficial Treatment Canada: Definitions, Causes, and Potential Solutions From the Perspective of Healthcare Practitioners.
Crit. Care Med.
PUBLISHED: 11-08-2014
Show Abstract
Hide Abstract
Many healthcare workers are concerned about the provision of nonbeneficial treatment in the acute care setting. We sought to explore the perceptions of acute care practitioners to determine whether they perceived nonbeneficial treatment to be a problem, to generate an acceptable definition of nonbeneficial treatment, to learn about their perceptions of the impact and causes of nonbeneficial treatment, and the ways that they feel could reduce or resolve nonbeneficial treatment.
Related JoVE Video
Composite of Macroporous Carbon with Honeycomb-Like Structure from Mollusc Shell and NiCo2O4 Nanowires for High-Performance Supercapacitor.
ACS Appl Mater Interfaces
PUBLISHED: 11-03-2014
Show Abstract
Hide Abstract
Novel biological carbon materials with highly ordered microstructure and large pore volume have caused great interest due to their multifunctional properties. Herein, we report the preparation of an interconnected porous carbon material by carbonizing the organic matrix of mollusc shell. The obtained three-dimensional carbon skeleton consists of hexangular and tightly arranged channels, which endow it with efficient electrolyte penetration and fast electron transfer, enable the mollusc shell based macroporous carbon material (MSBPC) to be an excellent conductive scaffold for supercapacitor electrodes. By growing NiCo2O4 nanowires on the obtained MSBPC, NiCo2O4/MSBPC composites were synthesized. When used on supercapacitor electrode, it exhibited anomalously high specific capacitance (?1696 F/g), excellent rate performance (with the capacity retention of 58.6% at 15 A/g) and outstanding cycling stability (88% retention after 2000 cycles). Furthermore, an all-solid-state symmetric supercapacitor was also assembled based on this NiCo2O4/MSBPC electrode and showed good electrochemical performance with an energy density of 8.47 Wh/kg at 1 A/g, good stability over 10000 cycles. And we believe that more potential applications beyond energy storage can be developed based on this MSBPC.
Related JoVE Video
Plasmonic caged gold nanorods for near-infrared light controlled drug delivery.
Nanoscale
PUBLISHED: 10-22-2014
Show Abstract
Hide Abstract
A new near-infrared light-controlled drug delivery system based on caged gold nanorods (CGNRs) is demonstrated. The loading and release process of drug payloads into/from CGNR nanocarriers were systematically investigated. The drug-loaded CGNR constructs could enable combined chemotherapy and photo-thermal effects in killing tumor cells upon light irradiation, therefore, enhance the killing efficiency. In conjunction with visibility under quenching-free dark-field imaging, CGNRs may serve as multifunctional theranostic reagents towards cancer diagnostics and therapeutics.
Related JoVE Video
[(99m)Tc]cFLFLF for Early Diagnosis and Therapeutic Evaluation in a Rat Model of Acute Osteomyelitis.
Mol Imaging Biol
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
Early diagnosis and therapeutic monitoring of acute osteomyelitis (AO) is challenging. Here, we use a polyethylene glycol (PEG)ylated chemotactic peptide cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF) conjugated with hydrazinonicotinamide (HYNIC) and labeled with Tc-99m ([(99m)Tc]cFLFLF) to image AO in a rat model and to validate its efficacy in early diagnosis and therapeutic evaluation of AO.
Related JoVE Video
Giant Plasmene Nanosheets, Nanoribbons, and Origami.
ACS Nano
PUBLISHED: 10-02-2014
Show Abstract
Hide Abstract
We introduce Plasmene- in analogy to graphene-as free-standing, one-particle-thick, superlattice sheets of nanoparticles ("meta-atoms") from the "plasmonic periodic table", which has implications in many important research disciplines. Here, we report on a general bottom-up self-assembly approach to fabricate giant plasmene nanosheets (i.e., plasmene with nanoscale thickness but with macroscopic lateral dimensions) as thin as ?40 nm and as wide as ?3 mm, corresponding to an aspect ratio of ?75?000. In conjunction with top-down lithography, such robust giant nanosheets could be milled into one-dimensional nanoribbons and folded into three-dimensional origami. Both experimental and theoretical studies reveal that our giant plasmene nanosheets are analogues of graphene from the plasmonic nanoparticle family, simultaneously possessing unique structural features and plasmon propagation functionalities.
Related JoVE Video
SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells.
FEBS J.
PUBLISHED: 09-24-2014
Show Abstract
Hide Abstract
Human SPLUNC1 can suppress nasopharyngeal carcinoma (NPC) tumor formation; however, the correlation between SPLUNC1expression and NPC patient prognosis has not been reported. In the present study, we used a large-scale sample of 1015 tissue cores to detect SPLUNC1 expression and its association with patient prognosis. SPLUNC1 expression was reduced in NPC samples compared to nontumor nasopharyngeal epithelium tissues. Positive expression of SPLUNC1 in NPC predicted a better prognosis (disease-free survival, P = 0.034; overall survival, P = 0.048). Cox's proportional hazards model revealed that SPLUNC1 could be a significant prognostic factor affecting disease-free survival (P = 0.027). A cDNA micro-array analyzed by significant analysis of micro-array (SAM) and ingenuity pathway analysis (IPA) revealed that an indirect interaction existed between SPLUNC1 and retinoic acid (RA) in the cancer regulatory network. To further investigate the molecular mechanisms involved, we utilized several bioinformatics tools and identified 12 retinoid X receptors heterodimer binding sites in the promoter region of the SPLUNC1 gene. The transcriptional activity of the SPLUNC1 promoter was up-regulated significantly by all-trans-retinoic acid (ATRA). SPLUNC1 and retinoic acid receptor expression were induced significantly by ATRA, and removal of ATRA led to a progressive loss of SPLUNC1 and retinoic acid receptor expression. ATRA inhibited proliferation and induced the differentiation of NPC cells. Interestingly, over-expression of SPLUNC1 sensitized NPC cells to ATRA, whereas knockdown of SPLUNC1 in HNE1 cells increased cell viability. Under SPLUNC1 knockdown conditions, differentiation was reversed by ATRA treatment. We concluded that SPLUNC1 could potentially predict prognosis for NPC patients and play an important role in ATRA-induced growth inhibition and differentiation in NPC cells.
Related JoVE Video
Using injectoporation to deliver genes to mechanosensory hair cells.
Nat Protoc
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
Mechanosensation, the transduction of mechanical force into electrochemical signals, allows organisms to detect touch and sound, to register movement and gravity, and to sense changes in cell volume and shape. The hair cells of the mammalian inner ear are the mechanosensors for the detection of sound and head movement. The analysis of gene function in hair cells has been hampered by the lack of an efficient gene transfer method. Here we describe a method termed injectoporation that combines tissue microinjection with electroporation to express cDNAs and shRNAs in mouse cochlear hair cells. Injectoporation allows for gene transfer into dozens of hair cells, and it is compatible with the analysis of hair cell function using imaging approaches and electrophysiology. Tissue dissection and injectoporation can be carried out within a few hours, and the tissue can be cultured for days for subsequent functional analyses.
Related JoVE Video
Genetic variation in ORMDL3 gene may contribute to the risk of asthma: a meta-analysis.
Hum. Immunol.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Since the first genome-wide association study report of an association between the ORMDL3 rs7216389 polymorphism and asthma, many studies have been carried out to establish its role in asthma susceptibility among different ethnic groups. However, results have not been consistent across all studies, compelling us to conduct the present meta-analysis.
Related JoVE Video
[Correlation between the changes of surface electromyographic signals of elbow flexor and extensor and motor function in stroke patients].
Zhonghua Yi Xue Za Zhi
PUBLISHED: 08-22-2014
Show Abstract
Hide Abstract
To explore the correlation between the changes of surface electromyography (sEMG) signals of biceps and triceps and torques for elbow flexion and extension during maximum isometric voluntary contraction (MIVC) and motor function in convalescent stroke patients so as to provide rationale for rehabilitation.
Related JoVE Video
Effect of ecto-5'-nucleotidase (eN) in astrocytes on adenosine and inosine formation.
Purinergic Signal.
PUBLISHED: 08-17-2014
Show Abstract
Hide Abstract
ATP is a gliotransmitter released from astrocytes. Extracellularly, ATP is metabolized by a series of enzymes, including ecto-5'-nucleotidase (eN; also known as CD73) which is encoded by the gene 5NTE and functions to form adenosine (ADO) from adenosine monophosphate (AMP). Under ischemic conditions, ADO levels in brain increase up to 100-fold. We used astrocytes cultured from 5NTE (+/+) or 5NTE (-/-) mice to evaluate the role of eN expressed by astrocytes in the production of ADO and inosine (INO) in response to glucose deprivation (GD) or oxygen-glucose deprivation (OGD). We also used co-cultures of these astrocytes with wild-type neurons to evaluate the role of eN expressed by astrocytes in the production of ADO and INO in response to GD, OGD, or N-methyl-D-aspartate (NMDA) treatment. As expected, astrocytes from 5NTE (+/+) mice produced adenosine from AMP; the eN inhibitor ?,?-methylene ADP (AOPCP) decreased ADO formation. In contrast, little ADO was formed by astrocytes from 5NTE (-/-) mice and AOPCP had no significant effect. GD and OGD treatment of 5NTE (+/+) astrocytes and 5NTE (+/+) astrocyte-neuron co-cultures produced extracellular ADO levels that were inhibited by AOPCP. In contrast, these conditions did not evoke ADO production in cultures containing 5NTE (-/-) astrocytes. NMDA treatment produced similar increases in ADO in both 5NTE (+/+) and 5NTE (-/-) astrocyte-neuron co-cultures; dipyridamole (DPR) but not AOPCP inhibited ADO production. These results indicate that eN is prominent in the formation of ADO from astrocytes but in astrocyte-neuron co-cultures, other enzymes or pathways contribute to rising ADO levels in ischemia-like conditions.
Related JoVE Video
A multicenter point-prevalence survey of antibiotic use in 13 Chinese hospitals.
J Infect Public Health
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
The use of antibiotics is considered a major determinant of the development of resistance in organisms. This study assessed current patterns of antibiotic prescription and provides background for quality improvement in general hospitals in Hubei, China.
Related JoVE Video
Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging.
ACS Nano
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
We make direct observations of localized light absorption in a single nanostructure irradiated by a strong femtosecond laser field, by developing and applying a technique that we refer to as plasma explosion imaging. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Our method probes individual, isolated nanoparticles in vacuum, which allows us to observe how small variations in the composition, shape, and orientation of the nanostructures lead to vastly different light absorption. Here, we study four different nanoparticle samples with overall dimensions of ?100 nm and find that each sample exhibits distinct light absorption mechanisms despite their similar size. Specifically, we observe subwavelength focusing in single NaCl crystals, symmetric absorption in TiO2 aggregates, surface enhancement in dielectric particles containing a single gold nanoparticle, and interparticle hot spots in dielectric particles containing multiple smaller gold nanoparticles. These observations demonstrate how plasma explosion imaging directly reveals the diverse ways in which nanoparticles respond to strong laser fields, a process that is notoriously challenging to model because of the rapid evolution of materials properties that takes place on the femtosecond time scale as a solid nanostructure is transformed into a dense plasma.
Related JoVE Video
Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system.
Eur Radiol
PUBLISHED: 08-05-2014
Show Abstract
Hide Abstract
To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis.
Related JoVE Video
Detection of microvesicle miRNA expression in ALL subtypes and analysis of their functional roles.
J. Huazhong Univ. Sci. Technol. Med. Sci.
PUBLISHED: 07-25-2014
Show Abstract
Hide Abstract
Microvesicles (MVs) are the heterogeneous mixtures of vesicles. MVs released by leukemia cells constitute an important part of the leukemia microenvironment. MVs might act as important reservoirs of microRNAs (miRNAs). It is worth evaluating whether MVs possess some unique miRNA contents that are valuable in understanding the pathogenesis. In this study, we investigated the miRNA expression patterns of Nalm-6-derived MVs, Jurkat-derived MVs and normal cell-derived MVs using miRNA microarrays. The potential target genes regulated by differentially expressed miRNAs were also predicted and analyzed. Results demonstrated that 182 miRNAs and 166 miRNAs were differentially expressed in Nalm-6-MVs and Jurkat-MVs, respectively. Many oncogenes, tumor suppressors and signal pathway genes were targeted by these aberrantly expressed miRNAs, which might contribute to the development of B-ALL or T-ALL. Our findings expanded the potential diagnostic markers of ALL and provided useful information for ALL pathogenesis.
Related JoVE Video
Slope stability analysis using limit equilibrium method in nonlinear criterion.
ScientificWorldJournal
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock ? ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when ? ci is relatively small, the relation between F and ? ci is nonlinear, but when ? ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.
Related JoVE Video
Extracellular Ca²? per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells.
Cell Calcium
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca(2+) concentration ([Ca(2+)]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca(2+), in this calcium hypothesis, serves as a reservoir of Ca(2+) source. Recently we find that extracellular Ca(2+)per se inhibits the [Ca(2+)]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca(2+) or both. In this work we showed that, in physiological condition, extracellular Ca(2+) per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca(2+) in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca(2+) directly triggered vesicle exocytosis without eliciting intracellular Ca(2+). We propose that intracellular Ca(2+) and extracellular Ca(2+)per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca(2+), while the vesicle quantal size was mainly determined by extracellular Ca(2+) in chromaffin cells physiologically.
Related JoVE Video
Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma.
Tumour Biol.
PUBLISHED: 07-14-2014
Show Abstract
Hide Abstract
Lactotransferrin (LTF), also known as lactoferrin, is a key component of innate immune defense. We previously reported that LTF was downregulated in nasopharyngeal carcinoma (NPC) and could suppress NPC cell proliferation. However, the relevance of the relationship between LTF expression and NPC clinical outcome has not been reported. This study aims to assess the possible correlations between LTF expression and clinical parameters and its potential prognostic predictive ability in the outcomes of patients with NPC. Complementary DNA (cDNA) microarray, quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) results suggested that LTF expression was significantly downregulated in NPC tissues compared to non-NPC tissues. LTF was negatively correlated with lymph node metastasis (P?=?0.042), T stage (P?
Related JoVE Video
Influence of thread pitch, helix angle, and compactness on micromotion of immediately loaded implants in three types of bone quality: a three-dimensional finite element analysis.
Biomed Res Int
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
This study investigated the influence of thread pitch, helix angle, and compactness on micromotion in immediately loaded implants in bone of varying density (D2, D3, and D4). Five models of the three-dimensional finite element (0.8?mm pitch, 1.6?mm pitch, 2.4?mm pitch, double-threaded, and triple-threaded implants) in three types of bone were created using Pro/E, Hypermesh, and ABAQUS software. The study had three groups: Group 1, different pitches (Pitch Group); Group 2, same compactness but different helix angles (Angle Group); and Group 3, same helix angle but different compactness (Compact Group). Implant micromotion was assessed as the comprehensive relative displacement. We found that vertical relative displacement was affected by thread pitch, helix angle, and compactness. Under vertical loading, displacement was positively correlated with thread pitch and helix angle but negatively with compactness. Under horizontal loading in D2, the influence of pitch, helix angle, and compactness on implant stability was limited; however, in D3 and D4, the influence of pitch, helix angle, and compactness on implant stability is increased. The additional evidence was provided that trabecular bone density has less effect on implant micromotion than cortical bone thickness. Bone type amplifies the influence of thread pattern on displacement.
Related JoVE Video
The Epidemiology and Resistance Mechanisms of Acinetobacter baumannii Isolates from the Respiratory Department ICU of a Hospital in China.
Microb. Drug Resist.
PUBLISHED: 07-04-2014
Show Abstract
Hide Abstract
Acinetobacter baumannii is an important nosocomial pathogen able to cause severe infections in an intensive care unit (ICU). However, there is a lack of analysis regarding the epidemiology and resistance of A. baumannii in respiratory department ICUs. In this study, clinical isolates were collected from the respiratory department ICU of Southwest Hospital from January 2009 to December 2010, and the social and demographic information of the patients from whom the isolates were taken was obtained from the Southwest Hospital information system. The minimal inhibitory concentration (MIC) of the isolates was determined by the agar dilution method. The carbapenemase-encoding resistance genes of these isolates were amplified using PCR. The clonal relationship of isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Forty-six isolates were collected from the respiratory department ICU, and the antibiotics minocycline and quinolone had higher drug sensitivity against these isolates. The OXA-51, OXA-23, and IMP-4 genes were present at rates of 100% (46/46), 67.4% (31/46), and 41.3% (19/46), respectively. Forty-six isolates had 12 different PFGE genotypes. The results above suggested that the hospital environment and patients contributed to nosocomial infections, and the spread of resistance genes in the hospital was common.
Related JoVE Video
Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy.
Opt Lett
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
In this study, the degree of conversion (DC) of an acrylic-based resin (IP-L 780) in two-photon polymerization (TPP) is systematically investigated via Raman microspectroscopy. A quantitative relationship between TPP laser parameters and the DC of the resin is established. Nonlinear increase in DC with increased laser average power is observed. The resin DC is more sensitive to the laser average power than the laser writing speed. Nanoindentation was employed to correlate the results obtained from Raman microspectroscopy with the mechanical properties of microstructures fabricated by TPP. At constant writing speeds, microstructures fabricated with high laser average powers possess high hardness and high reduced Young's modulus (RYM), indicating high DCs. The results are in line with high DCs measured under the same TPP parameters in Raman microspectroscopy. Raman microspectroscopy is proved to be an effective, rapid, and nondestructive method characterizing microstructures fabrication by TPP.
Related JoVE Video
[Total hysterectomy of laparoendoscopic single site surgery].
Zhonghua Fu Chan Ke Za Zhi
PUBLISHED: 06-28-2014
Show Abstract
Hide Abstract
To explore the operation skills of laparoendoscopic single site surgery (LESS) of total hysterectomy, to expand the application of LESS in the field of in gynecologic surgery.
Related JoVE Video
The ?-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803.
Mol. Microbiol.
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, ?sll1981, ?slr0370, ?slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in ?-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as ?-aminobutyrate aminotransferase, catalysing ?-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact ?-aminobutyrate shunt is present in Synechocystis. The ?sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the ?slr1022 and ?slr0370 strains and the ?sll1981/?slr1022 and ?sll1981/?slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the ?-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. (13) C-stable isotope analysis indicated that the ?-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the ?-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.
Related JoVE Video
Elevation of urinary adipsin in preeclampsia: correlation with urine protein concentration and the potential use for a rapid diagnostic test.
Hypertension
PUBLISHED: 06-23-2014
Show Abstract
Hide Abstract
Early diagnosis and treatment of preeclampsia are essential for prevention of seizure development and fetus maturation. Although various methods have been developed for predicting or monitoring the onset of preeclampsia, a simple assay that can be used as a home or point of care test remains unavailable. We attempted to find a urinary protein that could be used as a biomarker for developing such a test. Urinary samples were collected from 124 preeclampsia and 135 healthy pregnant women for screening using a protein array technology and quantification by ELISA. A urinary protein, adipsin, was found significantly increased, and the adipsin creatinine ratio was closely correlated with the urinary 24-hour protein in patients with preeclampsia. When combined with the increased diastolic blood pressure (?90 mm Hg), the sensitivity was 90.3% and the specificity reached 100.0% for preeclampsia diagnosis. We then developed a laminar flow immunoassay for rapid diagnosis, and the sensitivity and specificity were 89.04% and 100%, respectively, when combined with increased diastolic blood pressure. Because of the easiness of sample collection, assay conduction, and result interpretation, this urine test can be potentially used as a home test for monitoring preeclampsia onset for high-risk pregnant women and as a rapid test for a preliminary diagnosis for emergency patients at hospitals.
Related JoVE Video
Lung MRI of invasive fungal infection at 3 Tesla: evaluation of five different pulse sequences and comparison with multidetector computed tomography (MDCT).
Eur Radiol
PUBLISHED: 06-14-2014
Show Abstract
Hide Abstract
To evaluate the diagnostic performance of five MR sequences to detect pulmonary infectious lesions in patients with invasive fungal infection (IFI), using multidetector computed tomography (MDCT) as the reference standard.
Related JoVE Video
SLC39A5 mutations interfering with the BMP/TGF-? pathway in non-syndromic high myopia.
J. Med. Genet.
PUBLISHED: 06-02-2014
Show Abstract
Hide Abstract
High myopia, with the characteristic feature of refractive error, is one of the leading causes of blindness worldwide. It has a high heritability, but only a few causative genes have been identified and the pathogenesis is still unclear.
Related JoVE Video
The centrality of cancer proteins in human protein-protein interaction network: a revisit.
Int J Comput Biol Drug Des
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins.
Related JoVE Video
Genetic analysis of SNCA coding mutation in Chinese Han patients with Parkinson disease.
Acta Neurol Belg
PUBLISHED: 05-18-2014
Show Abstract
Hide Abstract
Parkinson disease (PD) is the second most common progressive neurodegenerative disorder. It is characterized by selective loss of dopamine-producing neurons and aggregation of alpha-synuclein (SNCA) in neurons of particular brain regions. At least 20 loci and 15 disease-causing genes have been identified. Rare missense or multiplication mutations in the SNCA gene have been reported to be involved in some familial and sporadic cases of PD. More recently, two novel pathogenic missense mutations (p.H50Q and p.G51D) were identified in the SNCA gene. To evaluate whether mutation(s) in the coding region of SNCA gene is related to PD in Chinese population, we investigated the SNCA gene in 502 PD patients of Chinese Han ethnicity from Mainland China. No pathogenic mutation was identified in the coding region of the gene. A known G to A transition (c.306 + 66G>A, rs10005233) in the intron 4, which does not potentially change splicing, was identified. Our data indicate that mutations in the coding region of the SNCA gene are not likely to be a common cause of PD in Chinese population.
Related JoVE Video
[Comparative study on transumbilical laparoendoscopic single-site surgery and the three-port laparoscopy in treatment of ovarian cystectomy].
Zhonghua Fu Chan Ke Za Zhi
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
To investigate clinical outcome of laparoendoscopic single-site compared with traditional three-port in treatment of ovarian cystectomy.
Related JoVE Video
Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis.
J Proteomics
PUBLISHED: 05-12-2014
Show Abstract
Hide Abstract
Nasopharyngeal carcinoma (NPC) is a major head and neck cancer with high occurrence in Southeast Asia and southern China. To identify novel biomarkers for the early detection of NPC patients, 2D-DIGE combined with MALDI-TOF-MS analysis was performed to identify differentially expressed proteins in the carcinogenesis and progression of NPC using LCM-purified normal nasopharyngeal epithelial tissues and various stages of NPC biopsies. As a result, 26 differentially expressed proteins were identified, of which two proteins with sharp expressional changes in the carcinogenic process, ENO1 and CYPA, were validated by western blot analysis and identified as critical seed proteins in the functional network. Immunohistochemistry assay was further performed to detect the expression of the two proteins with a tissue microarray that included various stages of NPC tissues. The ability of these proteins to detect NPC early was evaluated via a receiver operating characteristic analysis. The results indicated that the combination of the two proteins could perfectly discriminate NNET and AH from stage I of NPC with high sensitivity and specificity, which is more effective than using either of the two proteins individually. In summary, the combination of ENO1 and CYPA can serve as potential molecular markers for the early detection of NPC.
Related JoVE Video
Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid.
Apoptosis
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
The airway epithelium is critical for the normal integrity and function of the respiratory system. Excessive epithelial cell apoptosis contributes to cell damage and airway inflammation. We previously demonstrated that lymphocyte-derived microparticles (LMPs) induce apoptosis of human bronchial epithelial cells. However, the underlying mechanisms contributing to LMPs-evoked epithelial cell death are largely unknown. Here we used bronchial and lung tissue cultures to confirm the pro-apoptotic effects of LMPs. In cell culture experiments, we found that LMPs induced human airway epithelial cell apoptosis with associated increases in caspase-3 activity. In addition, LMPs treatment triggered oxidative stress in epithelial cells by enhancing production of malondialdehyde, superoxide, and reactive oxygen species (ROS), and by inhibiting production of the antioxidant glutathione. Moreover, decreasing cellular ROS with the antioxidant N-acetylcysteine rescued epithelial cell viability. Together, these results demonstrate an important role for oxidative stress in LMPs-induced cell death. In epithelial cells, LMPs treatment induced phosphorylation of p38 MAPK and arachidonic acid accumulation. Moreover, arachidonic acid was significantly cytotoxic towards LMPs-treated epithelial cells, whereas inhibition of p38 MAPK was protective against these cytotoxic effects. Similarly, inhibition of arachidonic acid production led to decreased caspase-3 activity, thus rescuing airway epithelial cells from LMPs-induced cell death. In conclusion, our results show that LMPs induce airway epithelial cell apoptosis by activating p38 MAPK signaling and stimulating production of arachidonic acid, with consequent increases in oxidative stress and caspase-3 activity. As such, LMPs may be regarded as deleterious markers of epithelial cell damage in respiratory diseases.
Related JoVE Video
Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells.
Breast Cancer
PUBLISHED: 04-17-2014
Show Abstract
Hide Abstract
Telomerase, a ribonucleoprotein enzyme mainly consisted of a catalytic protein subunit human telomerase reverse transcriptase (hTERT) and a human telomerase RNA component, is responsible for maintaining telomeres. Telomerase over-expression correlates significantly with tumors and is a prognostic marker. However, telomerase over-expression in breast cancers and the effect of telomerase inhibition as a candidate cancer therapy are unknown.
Related JoVE Video
Pedicle screw versus hybrid construct instrumentation in adolescent idiopathic scoliosis: meta-analysis of thoracic kyphosis.
Spine
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
A quantitative meta-analysis was conducted on publishing studies reporting results of spinal surgery in adolescent idiopathic scoliosis with instrumentation of pedicle screw or hybrid construct.
Related JoVE Video
Regulation of cellular iron metabolism and its implications in lung cancer progression.
Med. Oncol.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Iron is essential for life and is involved in numerous metabolic processes including cell growth and proliferation. However, excess iron in the body raises the risk of developing cancer due to its capacity to engage in redox cycling and free radical production. Therefore, iron can contribute to both carcinogenesis and tumor growth. Both epidemiologic and laboratory studies have demonstrated that the effects of iron overload are associated with the tumorigenesis of lung cancer and growth of lung cancer cells. In particular, the discovery of hepcidin and several iron transporters in the past decade may warrant reconsideration of the role of iron in carcinogenesis and tumor cell proliferation in lung cancer. Pathways of iron uptake, storage, efflux, and regulation are all disturbed in cancer, suggesting that reprogramming of iron metabolism is a critical aspect of tumor cell survival. Although these pathways in lung cancer have been identified and extensively studied, many issues on the metabolic processes of iron in lung cancer cells have not been addressed. Targeting metabolic pathways of iron may provide new tools for lung cancer prognosis and therapy.
Related JoVE Video
Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect.
Dev. Biol.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.
Related JoVE Video
Mono(2-ethylhexyl) phthalate induces apoptosis in p53-silenced L02 cells via activation of both mitochondrial and death receptor pathways.
Environ. Toxicol.
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is one of the main metabolites of di(2-ethylhexyl) phthalate. The evidence shows that DEHP may exert its toxic effects primarily via MEHP, which is 10-fold more potent than its parent compound in toxicity in vitro. MEHP-induced apoptosis is mediated by either p53-dependent or -independent pathway. However, the detailed mechanism of its toxicity remains unclear. In this study, immortalized normal human liver cell line L02 was chosen, as an in vitro model of nonmalignant liver, to elucidate the role of p53 in MEHP-induced apoptosis. The cells were treated with MEHP (6.25, 12.50, 25.00, 50.00, and 100.00 ?M) for 24 and 36 h, then small interfering RNA (siRNA) was used to specifically silence p53 gene of L02 cells. The results indicated that MEHP caused oxidative DNA damage and apoptosis in L02 cells were associated with the p53 signaling pathway. Further study found that MEHP (50.00 and 100.00 ?M) induced apoptosis in p53-silenced L02 cells, along with the up-regulations of Fas and FasL proteins as well as increased the Bax/Bcl-2 ratio and Caspase 3, 8, and 9 activities. Additionally, both FasL inhibitor (AF-016) and Caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone (Z-VAD-FMK) could prevent the cell apoptosis induced by MEHP. The findings suggested that MEHP-induced apoptosis in L02 cells involving a Caspases-mediated mitochondrial signaling pathway and/or death receptor pathway. p53 was not absolutely necessary for MEHP-induced L02 cell apoptosis. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
Related JoVE Video
Altered sedative effects of ethanol in mice with ?1 glycine receptor subunits that are insensitive to G?? modulation.
Neuropsychopharmacology
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Alcohol abuse and alcoholism are major health problems and one of the leading preventable causes of death. Before achieving better treatments for alcoholism, it is necessary to understand the critical actions of alcohol on membrane proteins that regulate fundamental functions in the central nervous system. After generating a genetically modified knock-in (KI) mouse having a glycine receptor (GlyR) with phenotypical silent mutations at KK385/386AA, we studied its cellular and in vivo ethanol sensitivity. Analyses with western blotting and immunocytochemistry indicated that the expression of ?1 GlyRs in nervous tissues and spinal cord neurons (SCNs) were similar between WT and KI mice. The analysis of synaptic currents recorded from KI mice showed that the glycinergic synaptic transmission had normal properties, but the sensitivity to ethanol was significantly reduced. Furthermore, the glycine-evoked current in SCNs from KI was resistant to ethanol and G-protein activation by GTP-?-S. In behavioral studies, KI mice did not display the foot-clasping behavior upon lifting by the tail and lacked an enhanced startle reflex response that are characteristic of other glycine KI mouse lines with markedly impaired glycine receptor function. The most notable characteristic of the KI mice was their significant lower sensitivity to ethanol (?40%), expressed by shorter times in loss of righting reflex (LORR) in response to a sedative dose of ethanol (3.5 g/Kg). These data provide the first evidence to link a molecular site in the GlyR with the sedative effects produced by intoxicating doses of ethanol.
Related JoVE Video
Simultaneous determination of five mercapturic acid derived from volatile organic compounds in human urine by LC-MS/MS and its application to relationship study.
J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
Acrylonitrile, acrolein, 1,3-butadiene, benzene, and crotonaldehyde are hazard volatile organic compounds in tobacco smoke, which can be metabolized to mercapturic acids (MAs) excreted in urine. MAs are can be regarded as important and specific biomarkers to evaluate exposure to those carcinogenic volatile organic compounds. A simultaneous determination of N-acetyl-S-2-cyanoethyl-cysteine (CEMA), 3-hydroxypropyl)-L-cysteine (3-HPMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-(phenyl)-L-cysteine (SPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA) derived from five volatile organic compounds by column-switching LC-MS/MS has been described. MAs were concentrated and cleaned up by an online reusable pre-column packed with restricted access material. The intra- and inter-day precisions of the method ranged from 0.7% to 15.2%. The LODs was 0.013-0.053 ng/mL. The recovery of the whole analytical procedure ranged from 79.3% to 116%. After validation, this method was successfully applied to urine samples from smokers (n=246) and nonsmokers (n=58). The results showed MAs in urine from smokers were significantly higher than that in nonsmoker except for SPMA. Urinary CEMA significantly correlated with 3-HPMA (r=0.763, P<0.0001) and HMPMA (r=0.910, P<0.0001). CEMA, 3-HPMA and HMPMA are potential biomarkers to distinguish the differences between smokers and nonsmokers.
Related JoVE Video
Observation and control of shock waves in individual nanoplasmas.
Phys. Rev. Lett.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
Using an apparatus that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide a mechanism for the generation and control of these shock waves. This observation of distinct shock waves in dense plasmas enables the control, study, and exploitation of nanoscale shock phenomena with tabletop-scale lasers.
Related JoVE Video
Direct writing of graphene patterns on insulating substrates under ambient conditions.
Sci Rep
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
To unleash the full potential of graphene in electronics and optoelectronics, high-quality graphene patterns on insulating substrates are required. However, existing methods generally follow a "synthesis + patterning" strategy, which are time consuming and costly for fabricating high-quality graphene patterns on desired substrates. We developed a nanofabrication process to deposit high-quality graphene patterns directly on insulating substrates via a solid-phase laser direct writing (LDW) process. Open-air and room-temperature fabrication of graphene patterns on insulating substrates has been achieved via a femtosecond LDW process without graphene transfer and patterning. Various graphene patterns, including texts, spirals, line arrays, and integrated circuit patterns, with a feature line width of 800 nm and a low sheet resistance of 205 ohm/sq, were fabricated. The LDW method provides a facile and cost-effective way to fabricate complex and high-quality graphene patterns directly on target substrates, which opens a door for fabricating various advanced functional devices.
Related JoVE Video
TGF-?-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance.
Eur. J. Immunol.
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
Regulatory B (Breg) cells have been shown to play a critical role in immune homeostasis and in autoimmunity models. We have recently demonstrated that combined anti-T cell immunoglobulin domain and mucin domain-1 and anti-CD45RB antibody treatment results in tolerance to full MHC-mismatched islet allografts in mice by generating Breg cells that are necessary for tolerance. Breg cells are antigen-specific and are capable of transferring tolerance to untreated, transplanted animals. Here, we demonstrate that adoptively transferred Breg cells require the presence of regulatory T (Treg) cells to establish tolerance, and that adoptive transfer of Breg cells increases the number of Treg cells. Interaction with Breg cells in vivo induces significantly more Foxp3 expression in CD4(+) CD25(-) T cells than with naive B cells. We also show that Breg cells express the TGF-? associated latency-associated peptide and that Breg-cell mediated graft prolongation post-adoptive transfer is abrogated by neutralization of TGF-? activity. Breg cells, like Treg cells, demonstrate preferential expression of both C-C chemokine receptor 6 and CXCR3. Collectively, these findings suggest that in this model of antibody-induced transplantation tolerance, Breg cells promote graft survival by promoting Treg-cell development, possibly via TGF-? production.
Related JoVE Video
Lactoferrin suppresses the Epstein-Barr virus-induced inflammatory response by interfering with pattern recognition of TLR2 and TLR9.
Lab. Invest.
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Epstein-Barr virus (EBV) infection contributes to tumorigenesis of various human malignancies including nasopharyngeal carcinoma (NPC). EBV triggers innate immune and inflammatory responses partly through Toll-like receptor (TLR) signaling. Lactoferrin (LF), with its anti-inflammatory properties, is an important component of the innate immune system. We previously reported that LF protects human B lymphocytes from EBV infection by its ability to bind to the EBV receptor CD21, but whether LF can suppress EBV-induced inflammation is unclear. Here, we report that LF reduced synthesis of IL-8 and monocyte chemoattractant protein-1 (MCP-1) induced by EBV in macrophages via its suppression of NF-?B activity. LF interacted with TLR2 and interfered with EBV-triggered TLR2-NF-?B activation. LF inhibited the ability of TLR9 to recognize dsDNA by binding to its co-receptor CD14, which blocked the interaction between CD14 and TLR9. EBV-induced inflammation was thus aggravated in the presence of CD14. In addition, LF expression levels were significantly downregulated in NPC specimens, and correlated inversely with IL-8 and MCP-1 expression. These findings suggest that LF may suppress the EBV-induced inflammatory response through interfering with the activation of TLR2 and TLR9.
Related JoVE Video
Factors Affecting Family Satisfaction with Inpatient End-of-Life Care.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Little data exists addressing satisfaction with end-of-life care among hospitalized patients, as they and their family members are systematically excluded from routine satisfaction surveys. It is imperative that we closely examine patient and institution factors associated with quality end-of-life care and determine high-priority target areas for quality improvement.
Related JoVE Video
miR-199a-5p regulates the expression of metastasis-associated genes in B16F10 melanoma cells.
Int J Clin Exp Pathol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
MicroRNAs are regulatory factors that play important roles in tumor development, invasion and metastasis. Previously, we showed that miR-199a is abnormally expressed in clinical melanoma specimens and expression was closely associated with clinical features of metastasis. However, the exact molecular mechanisms by which miR-199a-5p influences melanoma invasion and metastasis remains unclear. In this study, we investigated gene expression changes of metastasis-associated genes in B16F10 melanoma cells following targeted silencing or overexpression of miR-199a-5p, using mouse tumor metastasis PCR arrays. Comparison of gene expression changes in miR-199a-5p-silenced versus overexpressing cells identified a set of upregulated genes (> 2-fold) including Cd44, Cdh1, Cxcr4, Etv4, Fxyd5, Rpsa, Mmp3, Myc, Rb1, Tcf20, Hprt1, Actb1 and downregulated genes (> 2-fold) including Ctsk, Itga7 and Tnfsf10. Regulation of a subset of these genes (Myc, Tnfsf10 and Cd44) following miR-199a-5p silencing or overexpression was validated by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. In conclusion, our study demonstrates that miR-199a-5p regulates melanoma metastasis-related genes, and may provide a basis for the development of novel, molecularly targeted drugs.
Related JoVE Video
Glimepiride Promotes Osteogenic Differentiation in Rat Osteoblasts via the PI3K/Akt/eNOS Pathway in a High Glucose Microenvironment.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Our previous studies demonstrated that glimepiride enhanced the proliferation and differentiation of osteoblasts and led to activation of the PI3K/Akt pathway. Recent genetic evidence shows that endothelial nitric oxide synthase (eNOS) plays an important role in bone homeostasis. In this study, we further elucidated the roles of eNOS, PI3K and Akt in bone formation by osteoblasts induced by glimepiride in a high glucose microenvironment. We demonstrated that high glucose (16.5 mM) inhibits the osteogenic differentiation potential and proliferation of rat osteoblasts. Glimepiride activated eNOS expression in rat osteoblasts cultured with two different concentrations of glucose. High glucose-induced osteogenic differentiation was significantly enhanced by glimepiride. Down-regulation of PI3K P85 levels by treatment with LY294002 (a PI3K inhibitor) led to suppression of P-eNOS and P-AKT expression levels, which in turn resulted in inhibition of RUNX2, OCN and ALP mRNA expression in osteoblasts induced by glimepiride at both glucose concentrations. ALP activity was partially inhibited by 10 µM LY294002. Taken together, our results demonstrate that glimepiride-induced osteogenic differentiation of osteoblasts occurs via eNOS activation and is dependent on the PI3K/Akt signaling pathway in a high glucose microenvironment.
Related JoVE Video
Temporal trends and differences in mortality at trauma centres across Ontario from 2005 to 2011: a retrospective cohort study.
CMAJ Open
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Care in a trauma centre is associated with significant reductions in mortality after severe injury. However, emerging evidence suggests that outcomes across similarly accredited trauma centres are not equivalent, even after adjusting for case-mix. The primary objective of this analysis was to evaluate secular trends in overall mortality at trauma centres. Secondarily, we explored trauma centre-specific mortality to determine the extent of variation between centres.
Related JoVE Video
Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane-dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-?B and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.
Related JoVE Video
Anti-proliferative and anti-tumour effects of lymphocyte-derived microparticles are neither species- nor tumour-type specific.
J Extracell Vesicles
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Unregulated cell proliferation or growth is a prominent characteristic of cancer. We have previously demonstrated that LMPs (cell membrane microparticles derived from apoptotic human CEM T lymphoma cells stimulated with actinomycin D) strongly suppress the proliferation of not only human endothelial cells but also mouse Lewis lung carcinoma cells.
Related JoVE Video
Influence of artifact removal on rare species recovery in natural complex communities using high-throughput sequencing.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Large-scale high-throughput sequencing techniques are rapidly becoming popular methods to profile complex communities and have generated deep insights into community biodiversity. However, several technical problems, especially sequencing artifacts such as nucleotide calling errors, could artificially inflate biodiversity estimates. Sequence filtering for artifact removal is a conventional method for deleting error-prone sequences from high-throughput sequencing data. As rare species represented by low-abundance sequences in datasets may be sensitive to artifact removal process, the influence of artifact removal on rare species recovery has not been well evaluated in natural complex communities. Here we employed both internal (reliable operational taxonomic units selected from communities themselves) and external (indicator species spiked into communities) references to evaluate the influence of artifact removal on rare species recovery using 454 pyrosequencing of complex plankton communities collected from both freshwater and marine habitats. Multiple analyses revealed three clear patterns: 1) rare species were eliminated during sequence filtering process at all tested filtering stringencies, 2) more rare taxa were eliminated as filtering stringencies increased, and 3) elimination of rare species intensified as biomass of a species in a community was reduced. Our results suggest that cautions be applied when processing high-throughput sequencing data, especially for rare taxa detection for conservation of species at risk and for rapid response programs targeting non-indigenous species. Establishment of both internal and external references proposed here provides a practical strategy to evaluate artifact removal process.
Related JoVE Video
Pancreatic ductal adenocarcinoma contains an effector and regulatory immune cell infiltrate that is altered by multimodal neoadjuvant treatment.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The immune response to pancreatic ductal adenocarcinoma (PDA) may play a role in defining its uniquely aggressive biology; therefore, we sought to clearly define the adaptive immune infiltrate in PDA.
Related JoVE Video
[MiRNA regulatory mechanism in tumor initiation and progression.]
Zhong Nan Da Xue Xue Bao Yi Xue Ban
PUBLISHED: 12-31-2013
Show Abstract
Hide Abstract
MiRNAs can function as oncogenes or tumor suppressor genes. The abnormal expression of miRNAs leads to tumor malignant phenotypes, such as cell proliferation, apoptosis, invasion and metastasis, through which it is involved in the process of tumor initiation, progression and transcriptional regulation network. Therefore, it is important to clarify the mechanism of miRNA involved in the process of tumor initiation and progression. MiRNA regulation mechanism in tumor initiation and progression includes one-to-many and many-to-one regulation between TFto- miRNA and miRNA-to-target gene, which increases the complexity of miRNA regulation, thus affecting the biological behavior of the tumor, The expression and activity of Drosha and Dicer in the process of miRNA affect the synthesis of mature miRNA and involve in the process of tumor initiation and progression; ceRNA may bind with miRNA by competing with miRNA targeting genes and affect biological function of miRNA as miRNA inhibitor. Therefore the abnormal expression and structure of ceRNA is an important molecular mechanism of tumor initiation and progression. This complicated regulation network comprised by multi-dimensional regulation model and specific regulation of tumor initiation and progression provides impetus to exploring the functional restoration of miRNA as a novel target for cancer diagnosis and therapy.
Related JoVE Video
[Evapotranspiration characteristics of artificial and natural forests in Liupan Mountains of Ningxia, China during growth season].
Ying Yong Sheng Tai Xue Bao
PUBLISHED: 12-31-2013
Show Abstract
Hide Abstract
In order to understand the effects of the structure of forest ecosystem on the hydrological processes, a comparative study by using thermal dissipation technique and hydrological methodology was made on the evapotranspiration (ET) and its components of Larix principis-rupprechtii plantation and Pinus armandi natural forest in two adjacent stands in a small catchment Xiangshuihe of Liupan Mountains during the growth season (May-October) in 2009. Throughout the growth season, the total ET from the plantation was 518.2 mm, which accounted for 104.6% of the precipitation and was much higher than that (420.5 mm) of the natural forest. The allocation of ET in the vertical layers performed similarly between the two stands, with the order of canopy layer > herb and soil layer > shrub layer, but the ratio of each component to total ET differed significantly. The plantation consumed 0.2 and 0.9 times more water for canopy interception (19.6 mm per month) and tree transpiration (25.2 mm per month) than the natural forest, respectively. However, the transpiration from the plantation was 4.4 mm per month, and took up 23.4% of the natural forest. In contrast, the sum of soil evaporation and herbage evapotranspiration consumed 37.1 mm water per month in the plantation, which was 0.8 times higher than that in the natural forest. The ET was calculated by Penman-Monteith equation to compare the results estimated by sap flow measurements, and the values estimated by the two methods were similar.
Related JoVE Video
Separation and Quantitation of Three Acidic Herbicide Residues in Tobacco and Soil by Dispersive Solid-Phase Extraction and UPLC-MS/MS.
J Chromatogr Sci
PUBLISHED: 12-22-2013
Show Abstract
Hide Abstract
A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods.
Related JoVE Video
Chronic Stress Influences Sexual Motivation and Causes Damage to Testicular Cells in Male Rats.
J Sex Med
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
The suppressing effects of chronic stress on sexual desire have long been noted. Yet the biological mechanisms underlying such effects, especially at the level of cellular biology of testicular cells, have not been fully investigated.
Related JoVE Video
Oxidative UO2 Dissolution Induced by Soluble Mn(III).
Environ. Sci. Technol.
PUBLISHED: 12-17-2013
Show Abstract
Hide Abstract
The stability of UO2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)-PP complex was a potent oxidant that induced rapid UO2 dissolution at a rate higher than that by a comparable concentration of dissolved O2. However, the Mn(III)-DFOB complex was not able to induce oxidative dissolution of UO2. The ability of Mn(III) complexes to oxidize UO2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO2 oxidative dissolution by the Mn(III)-PP complex suggested that Mn(III) could directly oxidize UO2 without involving particulate Mn species (e.g., MnO2). The expected 2:1 reaction stoichiometry between Mn(III) and UO2 was observed. The reactivity of soluble Mn(III) in oxidizing UO2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)-pyrophosphate complexes. Disproportionation of Mn(III)-PP occurred at pH 9.0, and the oxidation of UO2 was then driven by both MnO2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.
Related JoVE Video
A cypovirus VP5 displays the RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing.
Nucleic Acids Res.
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
For double-stranded RNA (dsRNA) viruses in the family Reoviridae, their inner capsids function as the machinery for viral RNA (vRNA) replication. Unlike other multishelled reoviruses, cypovirus has a single-layered capsid, thereby representing a simplified model for studying vRNA replication of reoviruses. VP5 is one of the three major cypovirus capsid proteins and functions as a clamp protein to stabilize cypovirus capsid. Here, we expressed VP5 from type 5 Helicoverpa armigera cypovirus (HaCPV-5) in a eukaryotic system and determined that this VP5 possesses RNA chaperone-like activity, which destabilizes RNA helices and accelerates strand annealing independent of ATP. Our further characterization of VP5 revealed that its helix-destabilizing activity is RNA specific, lacks directionality and could be inhibited by divalent ions, such as Mg(2+), Mn(2+), Ca(2+) or Zn(2+), to varying degrees. Furthermore, we found that HaCPV-5 VP5 facilitates the replication initiation of an alternative polymerase (i.e. reverse transcriptase) through a panhandle-structured RNA template, which mimics the 5-3 cyclization of cypoviral positive-stranded RNA. Given that the replication of negative-stranded vRNA on the positive-stranded vRNA template necessitates the dissociation of the 5-3 panhandle, the RNA chaperone activity of VP5 may play a direct role in the initiation of reoviral dsRNA synthesis.
Related JoVE Video
Full of sound and fury, signifying nothing: burden of transient noncritical monitor alarms in a trauma resuscitation unit.
J Trauma Nurs
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
We examined the types of patient monitor alarms encountered in the trauma resuscitation unit of a major level 1 trauma center. Over a 1-year period, 316688 alarms were recorded for 6701 trauma patients (47 alarms/patient). Alarms were more frequent among patients with a Glasgow Coma Scale of 8 or less. Only 2.4% of all alarms were classified as "patient crisis," with the rest in the presumably less critical categories "patient advisory," "patient warning," and "system warning." Nearly half of alarms were ?5 seconds in duration. In this patient population, a 2-second delay would reduce alarms by 25%, and a delay of 5 seconds would reduce all alarms by 49%.
Related JoVE Video
Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4.
Chem. Biol. Interact.
PUBLISHED: 10-28-2013
Show Abstract
Hide Abstract
Type 1 diabetes mellitus (T1DM), a multisystem disease with both biochemical and anatomical/structural consequences, is a major health concern worldwide. Pancreatic islet transplantation provides a promising treatment for T1DM. However, the limited availability of islet tissue or new sources of insulin producing cells (IPCs) that are responsive to glucose hinder this promising approach. Though slow, the development of pancreatic beta-cell lines from rodent or human origin has been steadily progressing. Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, culture-expanded, non-hematopoietic cells that are currently being investigated as a novel cellular therapy. The in vitro differentiation potential of IPCs has raised hopes for a treatment of clinical diseases associated with autoimmunity. We screened for small molecules that induce pancreatic differentiation of IPCs. There are some compounds which showed positive effects on the DTZ staining. The aminopyrrole derivative compound XW4.4 which shows the best activity among them was found to induce pancreatic differentiation of rat MSCs (rMSCs). The in vitro studies indicated that treatment of rMSCs with compound XW4.4 resulted in differentiated cells with characteristics of IPCs including islet-like clusters, spherical, grape-like morphology, insulin secretion, positive for dithizone, glucose stimulation and expression of pancreatic endocrine cell marker genes. The data has also suggested that hepatocyte nuclear factor 3? (HNF 3?) may be involved in pancreatic differentiation of rMSCs when treated with XW4.4. Results indicate that XW4.4 induced rMSCs support the efforts to derive functional IPCs and serve as a means to alleviate limitations surrounding islet cell transplantation in the treatment of T1DM.
Related JoVE Video
Segmentation of hepatic tumor from abdominal CT data using an improved support vector machine framework.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
An improved support vector machine (SVM) framework has been developed to segment hepatic tumor from CT data. By this method, the one-class SVM (OSVM) and two-class SVM (TSVM) are connected seamlessly by a boosting tool, to tackle the tumor segmentation via both offline and online learning. An initial tumor region was first pre-segmented by an OSVM classifier. Then the boosting tool was employed to automatically generate the negative (non-tumor) samples, according to certain criteria. The pre-segmented initial tumor region and the non-tumor samples generated were used to train a TSVM) classifier. By the trained TSVM classifier, the final tumor lesion was segmented out. Tested on 16 sets of CT abdominal scans, quantitative results suggested that the developed method achieved significantly higher segmentation accuracy than the OSVM and TSVM classifiers.
Related JoVE Video
Planning of hepatectomy for tumor resection: Resection surface construction and optimization.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
An interactive liver surgery planning system has been developed to construct and optimize the resection plan. With this system, the segmentation results of the liver and its components (such as tumors and vessels) are comprehensively visualized for surgeons to have an intuitive understanding of the internal anatomical structure of the liver. This system will also allow surgeons to interactively create and modify a resection plan on the virtual liver model. The resection surface, whose boundary is a closed curve, will be automatically constructed with the safe resection margins of tumors. Different from other systems, our developed system is able to generate the safety margins to all tumors. During surgery, a larger resection surface may cause potentially more bleeding and other complications. Therefore, area minimization is applied during the resection surface construction by adopting the minimal area mesh, which is a smooth surface with minimal area. After these virtual modifications, the resultant resection surface indicates the route to cut the liver for tumor removal. The volumes for both resected liver and residual liver are calculated for clinical decision making.
Related JoVE Video
Loss of metabotropic glutamate receptor 2 escalates alcohol consumption.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-30-2013
Show Abstract
Hide Abstract
Identification of genes influencing complex traits is hampered by genetic heterogeneity, the modest effect size of many alleles, and the likely involvement of rare and uncommon alleles. Etiologic complexity can be simplified in model organisms. By genomic sequencing, linkage analysis, and functional validation, we identified that genetic variation of Grm2, which encodes metabotropic glutamate receptor 2 (mGluR2), alters alcohol preference in animal models. Selectively bred alcohol-preferring (P) rats are homozygous for a Grm2 stop codon (Grm2 *407) that leads to largely uncompensated loss of mGluR2. mGluR2 receptor expression was absent, synaptic glutamate transmission was impaired, and expression of genes involved in synaptic function was altered. Grm2 *407 was linked to increased alcohol consumption and preference in F2 rats generated by intercrossing inbred P and nonpreferring rats. Pharmacologic blockade of mGluR2 escalated alcohol self-administration in Wistar rats, the parental strain of P and nonpreferring rats. The causal role of mGluR2 in altered alcohol preference was further supported by elevated alcohol consumption in Grm2 (-/-) mice. Together, these data point to mGluR2 as an origin of alcohol preference and a potential therapeutic target.
Related JoVE Video
[BMPs and cancer].
Zhong Nan Da Xue Xue Bao Yi Xue Ban
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
Bone morphogenetic proteins (BMPs) were first studied as growth factors or morphogens of the transforming growth factor-beta super family. These growth molecules, originally associated with bone and cartilage development, are now known to play important roles in morphogenesis and homeostasis in many other tissues. Recently, significant contributions of BMPs, their receptors, and interacting molecules have been linked to carcinogenesis and tumor progression. BMPs can sometimes play a role as a tumor suppressor. This article explains the composition and biological characteristics of BMPs, and investigates their new roles in the pathogenesis of cancer.
Related JoVE Video
Protein function prediction by collective classification with explicit and implicit edges in protein-protein interaction networks.
BMC Bioinformatics
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Protein function prediction is an important problem in the post-genomic era. Recent advances in experimental biology have enabled the production of vast amounts of protein-protein interaction (PPI) data. Thus, using PPI data to functionally annotate proteins has been extensively studied. However, most existing network-based approaches do not work well when annotation and interaction information is inadequate in the networks.
Related JoVE Video
Single-crystal caged gold nanorods with tunable broadband plasmon resonances.
Chem. Commun. (Camb.)
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
We report on the synthesis and characterization of single-crystal caged gold nanorods (CGNRs) which exhibited broadband plasmonic resonances. Redshift of plasmon resonance can be realized by increasing the length, whereas blueshift can be achieved by increasing either the overall width of the cage or the thickness of nanocage walls.
Related JoVE Video
A comparative evaluation on prediction methods of nucleosome positioning.
Brief. Bioinformatics
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
Nucleosome positioning plays an essential role in cellular processes by modulating accessibility of DNA to proteins. Many computational models have been developed to predict genome-wide nucleosome positions from DNA sequences. Comparative analysis of predicted and experimental nucleosome positioning maps facilitates understanding the regulatory mechanisms of transcription and DNA replication. Therefore, a comprehensive evaluation of existing computational methods is important and useful for biologists to choose appropriate ones in their research. In this article, we carried out a performance comparison among eight widely used computational methods on four species including yeast, fruitfly, mouse and human. In particular, we compared these methods on different regions of each species such as gene sequences, promoters and 5UTR exons. The experimental results show that the performances of the two latest versions of the thermodynamic model are relatively steadier than the other four methods. Moreover, these methods are workable on four species, but their performances decrease gradually from yeast to human, indicating that the fundamental mechanism of nucleosome positioning is conserved through the evolution process, but more and more factors participate in the determination of nucleosome positions, which leads to sophisticated regulation mechanisms.
Related JoVE Video
Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles.
J Biomed Mater Res A
PUBLISHED: 08-09-2013
Show Abstract
Hide Abstract
Although titanium (Ti) implants are widely used clinically, implant-associated bacterial infection is still one of the most serious complications in orthopedic surgery. Long-term antibacterial properties and the ability to inhibit biofilm formation are highly desirable to prevent implant associated infection. In this study, a controllable amount of silver (Ag) nanoparticles was incorporated into titanium oxide; or titanium, nanotubes (TiO2 -NTs). The reliable release and long-term antibacterial function of Ag, in vivo and in vitro, and influence normal bone-implant integration from the Ag released from Ag-incorporated NTs in vivo have been studied to make them useable in clinical practice. In the current study, TiO2 -NTs loaded with Ag (NT-Ag) exhibited strong antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC43300) in vitro for 30 days, and the ability to penetrate the protein layer well. In addition, X-ray examination and 2-[(18) F]-fiuoro-2-deoxy-D-glucose positron emission tomography indicates that NT-Ag show extremely long antibacterial activity in vivo in a rat model. Furthermore, histomorphometric analysis demonstrated that satisfactory bio-integration can be expected. Our results indicate that NT-Ag has both simultaneous antimicrobial and excellent bio-integration properties, make it a promising therapeutic material for orthopedic application. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
Related JoVE Video
[Pattern visual evoked potentials in normal-vision eyes of post-therapy amblyopia].
Zhong Nan Da Xue Xue Bao Yi Xue Ban
PUBLISHED: 08-03-2013
Show Abstract
Hide Abstract
To evaluate the clinical significance of pattern visual evoked potential (P-VEP) parameters on amblyopic patients with normal-vision after pleoptic therapy.
Related JoVE Video
[Study on phase correction method of spatial heterodyne spectrometer].
Guang Pu Xue Yu Guang Pu Fen Xi
PUBLISHED: 08-03-2013
Show Abstract
Hide Abstract
Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.
Related JoVE Video
Real-time endocytosis imaging as a rapid assay of ligand-GPCR binding in single cells.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 07-31-2013
Show Abstract
Hide Abstract
Most G protein-coupled receptors (GPCRs) do not generate membrane currents in response to ligand-receptor binding (LRB). Here, we describe a novel technique using endocytosis as a bioassay that can detect activation of a GPCR in a way analogous to patch-clamp recording of an ion channel in a living cell. The confocal imaging technique, termed FM endocytosis imaging (FEI), can record ligand-GPCR binding with high temporal (second) and spatial (micrometer) resolution. LRB leads to internalization of an endocytic vesicle, which can be labeled by a styryl FM dye and visualized as a fluorescent spot. Distinct from the green fluorescence protein-labeling method, FEI can detect LRB endocytosis mediated by essentially any receptors (GPCRs or receptors of tyrosine kinase) in a native cell/cell line. Three modified versions of FEI permit promising applications in functional GPCR studies and drug screening in living cells: 1) LRB can be recorded in "real time" (time scale of seconds); 2) internalized vesicles mediated by different GPCRs can be discriminated by different colors; and 3) a high throughput method can screen ligands of a specific GPCR.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.