JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Heterogeneous interesterification of triacylglycerols catalyzed by using potassium-doped alumina as a solid catalyst.
J. Agric. Food Chem.
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
Heterogeneous interesterification of vegetable oils offers an environmentally more attractive option for the modification of edible oils to meet the specifications for certain food applications. In this work, potassium-doped alumina (KNO3/Al2O3) was prepared using an impregnation method, followed by calcinations at a temperature of 700 °C, and was then employed as heterogeneous catalysts for the interesterification of triacylglycerols. The solid catalyst was characterized by means of Hammett titration method, power X-ray diffraction, scanning electron microscopy, and nitrogen adsorption-desorption techniques. It was determined that the catalyst with KNO3 loading of 35% on alumina support and calcined at 700 °C exhibited the best catalytic activities toward the interesterification between soybean oil and methyl stearate under solvent-free conditions. Also, the solid base catalyst was successfully applied to the interesterification of soybean oil and lard blends in a heterogeneous manner. The physicochemical properties of the interesterified products were investigated using gas chromatography, high-performance liquid chromatography, and confocal laser scanning microscopy. It was found that the slip melting point and crystal morphology had a significant variation after the interesterification reaction as a result of the modification in the TAG profile. With the solid base catalyst, an environmentally friendly approach for the interesterification of triacylglycerols in a heterogeneous manner was developed.
Related JoVE Video
Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst.
J Oleo Sci
PUBLISHED: 09-10-2014
Show Abstract
Hide Abstract
The magnetic Fe3O4/SBA-15 composites were prepared, and treated with 3-aminopropyltriethoxysilane as a carrier material for enzyme immobilization. The immobilization of Candida rugosa lipase onto the amino-functionalized Fe3O4/SBA-15 composite was investigated by using glutaraldehyde as a coupling reagent. The immobilized lipase was then employed as a biocatalyst for the interesterification of soybean oil and methyl stearate in a laboratory-scale operation at 45°C. Various techniques, such as Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), and vibrating sample magnetometry (VSM), were used for the characterization of the immobilized lipase composite. The immobilized lipase behaved superparamagnetic and showed excellent response at applied magnetic field. The obtained results showed that the immobilized lipase could efficiently catalyze the interesterification reaction. Moreover, the interesterification reaction parameters, such as reaction temperature, substrate ratio and reaction time were investigated regarding the stearoyl incorporation into the triacylglycerols. Further, the immobilized lipase proved to be easily separated from the reaction mixture by applying an external magnetic field and to be stable in the repeated use for four cycles.
Related JoVE Video
Preparation of low calorie structured lipids catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene(TBD)-functionalized mesoporous SBA-15 silica in a heterogeneous manner.
J. Agric. Food Chem.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD, a strong bicyclic guanidine base) functionalized SBA-15 material has been found to be an efficient solid catalyst for the interesterification between tributyrin and methyl stearate in a solvent-free system for the production of low-calorie structured lipid (LCSL). The solid base catalyst was characterized by using small-angle X-ray scattering, Fourier transform infrared spectra, thermo gravimetric analysis, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption, and elemental analysis techniques. The obtained LCSL was analyzed by reverse-phase high-performance liquid chromatography for triacylglycerol composition. The influence of various reaction parameters, such as the substrate ratio, reaction temperature, and reaction time, on the interesterification reaction was investigated systematically. More than 90% LCSL was obtained at 80 °C within 1 h when the methyl stearate/tributyrin molar ratio of 2:1 was employed. The obtained solid catalyst could be recovered easily and reused for several recycles with a negligible loss of activity. By using the solid base catalyst, an eco-friendly more benign process for the interesterification reaction in a heterogeneous manner was developed.
Related JoVE Video
Interesterification of soybean oil and lard blends catalyzed by SBA-15-pr-NR?OH as a heterogeneous base catalyst.
J. Agric. Food Chem.
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
A novel heterogeneous SBA-15-pr-NR?OH catalyst has been prepared by reactions of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride with mesoporous SBA-15 materials. The solid base catalysts were characterized by using Fourier transform infrared spectra, thermogravimetric analysis, nitrogen adsorption-desorption, and elemental analysis techniques. By using the solid catalyst, an environmentally benign process for the interesterification of soybean oil and lard blends in a heterogeneous manner was developed. The interesterification was investigated regarding the slip melting point (SMP), iodine value (IV), triacylglycerols (TAGs) profile, fatty acid composition at the sn-2 position in TAGs, and differential scanning calorimetry (DSC). The obtained results revealed that the solid base catalyst was capable of catalyzing TAG interesterification. It was shown that interesterification significantly modified the physicochemical properties of the oil and fat blends. The interesterified products had lower SMPs than their corresponding physical blends. These changes in melting behaviors were mostly due to the alterations in TAG compositions. The DSC cooling and melting thermograms showed an obvious change in thermal properties after the interesterification reaction.
Related JoVE Video
Immobilization of tetramethylguanidine on mesoporous SBA-15 silica: a heterogeneous basic catalyst for transesterification of soybean oil.
Bioresour. Technol.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
An active heterogeneous catalyst, namely 1,1,3,3-tetramethylguanidine (TMG) immobilized on mesoporous SBA-15 silica (SBA-15-pr-TMG), was prepared and the catalytic activity was investigated for transesterification of soybean oil with methanol. The heterogeneous catalysts were characterized using Hammett titration method, Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, and X-ray photoelectron spectroscopy techniques. It is shown that the activity of the catalysts for the transesterification reaction is closely related to their basic properties. By using this catalyst, an environmentally benign process for biodiesel production in a heterogeneous manner was developed. When the reaction was carried out at reflux of methanol, with a molar ratio of methanol to soybean oil of 15:1, a reaction time 12h and a catalyst amount 5 wt%, the oil conversion of 91.7% was achieved. The catalyst could be recovered easily and reused without significant degradation in activity.
Related JoVE Video
Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.
Bioresour. Technol.
PUBLISHED: 06-20-2011
Show Abstract
Hide Abstract
The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability.
Related JoVE Video
Impact of degree heterogeneity on the behavior of trapping in Koch networks.
Chaos
PUBLISHED: 08-09-2010
Show Abstract
Hide Abstract
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent ? of power-law degree distribution P(k) ? k(-?), which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent ? in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of ? and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where ? influences qualitatively the MFPT of trapping problem.
Related JoVE Video
Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
In general, the power-law degree distribution has profound influence on various dynamical processes defined on scale-free networks. In this paper, we will show that power-law degree distribution alone does not suffice to characterize the behavior of trapping problems on scale-free networks, which is an integral major theme of interest for random walks in the presence of an immobile perfect absorber. In order to achieve this goal, we study random walks on a family of one-parameter (denoted by q) scale-free networks with identical degree sequence for the full range of parameter q, in which a trap is located at a fixed site. We obtain analytically or numerically the mean first-passage time (MFPT) for the trapping issue. In the limit of large network order (number of nodes), for the whole class of networks, the MFPT increases asymptotically as a power-law function of network order with the exponent obviously different for different parameter q, which suggests that power-law degree distribution itself is not sufficient to characterize the scaling behavior of MFPT for random walks at least trapping problem, performed on scale-free networks.
Related JoVE Video
Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network; based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
Related JoVE Video
Exact solution for mean first-passage time on a pseudofractal scale-free web.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
The explicit determinations of the mean first-passage time (MFPT) for trapping problem are limited to some simple structure, e.g., regular lattices and regular geometrical fractals, and determining MFPT for random walks on other media, especially complex real networks, is a theoretical challenge. In this paper, we investigate a simple random walk on the the pseudofractal scale-free web (PSFW) with a perfect trap located at a node with the highest degree, which simultaneously exhibits the remarkable scale-free and small-world properties observed in real networks. We obtain the exact solution for the MFPT that is calculated through the recurrence relations derived from the structure of PSFW. The rigorous solution exhibits that the MFPT approximately increases as a power-law function of the number of nodes, with the exponent less than 1. We confirm the closed-form solution by direct numerical calculations. We show that the structure of PSFW can improve the efficiency of transport by diffusion, compared with some other structure, such as regular lattices, Sierpinski fractals, and T-graph. The analytical method can be applied to other deterministic networks, making the accurate computation of MFPT possible.
Related JoVE Video
Transesterification of soybean oil over WO3 supported on AlPO4 as a solid acid catalyst.
Bioresour. Technol.
Show Abstract
Hide Abstract
WO(3)/AlPO(4) catalysts were prepared by impregnation of AlPO(4) with ammonium metatungstate. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermo gravimetric and differential thermal analysis (TG-DTA) demonstrated that the tungsten compound was incorporated into AlPO(4) forming the catalyst with an enhanced acidity. When transesterification of soybean oil over the catalysts was performed, the catalyst with 30 wt.% WO(3) loading and calcined at 1073 K, exhibited the best catalytic activity with a conversion of 72.5%. The transesterification was optimal at 453 K for 5h with a methanol/oil ratio of 30:1 and catalyst dosage of 5 wt.%. Free fatty acid (FFA) and water did not affect the catalytic activity. The catalyst proved to be stable over four transesterification cycles as it lost only 4% of its activity after being reused four times. The catalyst could be used for the transesterification of low-cost oils for biodiesel production.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.