JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Comparative transcriptional activity of five promoters in BAC-cloned MDV for the expression of the hemagglutinin gene of H9N2 avian influenza virus.
J. Virol. Methods
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
On the basis of recent studies, much attention has been given to recombinant MDV (rMDV)-based vaccines. During the construction of rMDV, the activity of promoters to transcribe foreign genes is one of the major factors that can affect protective efficacy. To investigate the transcription activity and efficacy of five different promoters, the advantage of an existing rMDV BAC infectious clone that had been previously constructed was used to construct rMDVs. The expression cassette of the hemagglutinin gene (HA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain was inserted into the US2 region under five selected promoters. These five promoters included three MDV endogenous promoters (the promoter for the gB gene and a bi-directional promoter in both directions for pp38 (ppp38) and 1.8 kb RNA transcripts (p1.8 kb)), and two exogenous promoters (CMV and SV40). Among these five promoters, the CMV promoter demonstrated the highest activity, followed by p1.8 kb and SV40, which had a similar transcriptional activity level. Two of the MDV endogenous promoters showed much lower transcriptional activities, particularly the promoter ppp38, which had the lowest activity. The results of the in vivo experiment proved that none of the three recombinant viruses of rGX-CMV-HA, rGX-SV40-HA and rGX-p1.8kb-HA provided protection in SPF chickens. Chickens vaccinated with rGX-pPP38-HA induced 50% and rGX-gB-HA induced 25% protection against the challenge with H9N2, respectively.
Related JoVE Video
Transcriptional activity comparison of different sites in recombinant Marek's disease virus for the expression of the H9N2 avian influenza virus hemagglutinin gene.
J. Virol. Methods
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
Over the last two decades, much attention has been paid to MDV-vectored recombinant vaccines. Many factors have influenced their protective efficacy, and insertion site has been among the main influential factors for the expression of foreign genes in recombinant Marek's disease virus (rMDV). To compare the transcriptional activity of different sites of rMDV, an H9N2 avian influenza virus hemagglutinin gene (AIV-H9N2-HA) expression cassette that used the bi-directional promoter of serotype 1 MDV (MDV1) in the 1.8kb RNA transcript direction (p1.8kb) as a promoter was inserted into 4 different regions of MDV using the bacterial artificial chromosome (BAC) vector and FLP/FRT recombination technique. The insertion regions included 3 of its own sites (US2, US10 and one of Meq genes) in the MDV genome and a foreign site (gpt gene) in the BAC vector. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to analyze and compare the H9N2-HA expression levels of these different rMDVs both at the mRNA level and at the protein level. The results indicated that among the four tested insertion regions, the HA expression cassette in the US2 region demonstrated the highest activity, followed by that in the Meq region, which was almost equal to that of US10. Further, the expression cassette had the lowest activity in the foreign region gpt gene. The above data could be useful for choosing proper recombinant insertion regions in the construction of rMDV to express different foreign genes, and it is a prerequisite for developing effective MDV-vectored recombinant vaccines.
Related JoVE Video
Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber.
Lab Chip
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
A novel direct identification of double-strand DNA is proposed by using real-time enzyme-digestion in a resonant-cantilever embedded microfluidic chip. The new gene-level detection method is expected to replace the conventional DNA-hybridization based gene-detection that suffers from not only nonspecific adsorption induced false-positives but also complicated single-strand DNA preparation and hybridization. Since a detected DNA chain features a unique cutting site for a certain restriction-enzyme, the accurately cut-off mass (representing the length of the digested segment) can be online recorded by the frequency-shift signal of the resonant micro-cantilever sensor. This enzyme-digestion technique is confirmed by experimental identification of the stx2 gene of E. coli O157:H7. The direct-PCR sample is directly analyzed by using our lab-made cantilever-embedded microfluidic-chip. The 3776 bp DNA is immobilized via biotin-streptavidin binding and the added mass is recorded by a frequency-decrease of 15.9 kHz within 10 min. Then, with EcoRV-enzyme digestion at the site of 2635 bp, the cut-off mass is real-time detected by a frequency-increase of 10.2 kHz within 6 min. The detected frequency-shift ratio of 15.9/10.2 = 64.2% is consistent with the length ratio between the cut-off fragment and the whole DNA chain (2635/3776 = 69.8%). Hence, the simple and accurate double-strand detection method is verified experimentally.
Related JoVE Video
Construction of recombinant Marek's disease virus (MDV) lacking the meq oncogene and co-expressing AIV-H9N2 HA and NA genes under control of exogenous promoters.
J. Biotechnol.
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
To develop a recombinant Marek's disease virus (rMDV1) co-expressing the hemagglutinin gene (HA) and neuramidinase gene (NA) from a low pathogenic avian influenza virus (LPAIV) H9N2 strain and lacking the meq oncogene that shares homology with the Jun/Fos family of transcriptional factors, a wild strain of MDV GX0101 was used as parental virus, the HA and NA genes co-expression cassette under control of the CMV and SV40 early promoters was inserted at two meq sites of GX0101 to form a new meq knock-out mutant MDV (MZC12HA/NA) through homologous recombination. MZC12HA/NA was reconstituted by transfection of recombinant BAC-MDV DNA into the secondary chicken embryo fibroblast (CEF) cells. Highly purified MZC12HA/NA was obtained after four rounds of plaque purification and proliferation. In vitro growth properties of recombinant virus were also inspected and concluded that the MZC12HA/NA had the same growth kinetics in CEF cultures as its parental wild type virus GX0101. Southern blot indicated that co-expression cassette was successfully inserted at two copies sites of meq gene, so two meq genes were knocked-out completely. RT-qPCR showed transcription and expression levels of the HA and NA genes were both significantly higher than that of GX0101 own pp38 gene. Indirect fluorescence antibody (IFA) test, and Western blot analyses indicated that HA and NA genes were co-expressed simultaneously under control of the different promoters but meq genes were not. These results herald a new and effective recombinant meq-deleted MDV-based AIV-H9N2 vaccine may be useful in protecting chickens from very virulent MDV and H9N2 challenges.
Related JoVE Video
Biosynthesis of 4-aminoheptose 2-epimers, core structural components of the septacidins and spicamycins.
J. Antibiot.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Septacidins and spicamycins are acylated 4-aminoheptosyl-?-N-glycosides produced by Streptomyces fimbriatus and S. alanosinicus, respectively. Their structures are highly conserved, but differ in the stereochemistry of the 4-aminoheptosyl residues. The origin of this stereochemistry is unknown, but is presumably because of the difference in their biosynthetic pathways. We have synthesized the septacidin 4-aminoheptose to verify the difference between septacidin and spicamycin. Isotopic enrichment studies were undertaken using S. fimbriatus, and show that the septacidin heptose is derived from the pentose phosphate pathway. This indicates conserved pathways leading to the biosynthesis of 4-amino-4-deoxy-L-gluco-heptose or 4-amino-4-deoxy-L-manno-heptose.
Related JoVE Video
Construction of recombinant Marek's disease virus (rMDV) co-expressing AIV-H9N2-NA and NDV-F genes under control of MDV's own bi-directional promoter.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
To qualitatively analyze and evaluate a bi-directional promoter transcriptional function in both transient and transgenic systems, several different plasmids were constructed and recombinant MDV type 1 strain GX0101 was developed to co-express a Neuraminidase (NA) gene from Avian Influenza Virus H9N2 strain and a Fusion (F) gene from the Newcastle disease virus (NDV). The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmid driven in each direction by the bi-directional promoter. To test whether the expression of pp38/pp24 heterodimers are the required activators for the expression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containing expression cassette for the two foreign genes was co-transfected with a pp38/pp24 expression plasmid, pBud-pp38-pp24, in chicken embryo fibroblast (CEF) cells. Alternatively, plasmid pPpp38-NA/1.8kb-F was transfected in GX0101-infected CEFs where the viral endogenous pp38/pp24 were expressed via virus infection. The expression of both foreign genes was activated by pp38/pp24 dimers either via virus infection, or co-expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had no expression. We chose to insert the expression cassette of Ppp38-NA/1.8kb-F in the non-essential region of GX0101?Meq US2 gene, and formed a new rMDV named MZC13NA/F through homologous recombination. Indirect fluorescence antibody (IFA) test, ELISA and Western blot analyses indicated that F and NA genes were expressed simultaneously under control of the bi-directional promoter, but in opposite directions. The data also indicated the activity of the promoter in the 1.8-kb mRNA transcript direction was higher than that in the direction for the pp38 gene. The expression of pp38/pp24 dimers either via co-tranfection of the pBud-pp38-pp24 plasmid, or by GX0101 virus infection were critical to activate the bi-directional promoter for expression of two foreign genes in both directions. Therefore, the confirmed function of the bi-directional promoter provides better feasibilities to insert multiple foreign genes in MDV genome based vectors.
Related JoVE Video
Genetic dissection of the polyoxin building block-carbamoylpolyoxamic acid biosynthesis revealing the "pathway redundancy" in metabolic networks.
Microb. Cell Fact.
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Polyoxin, a peptidyl nucleoside antibiotic, consists of three building blocks including a nucleoside skeleton, polyoximic acid (POIA), and carbamoylpolyoxamic acid (CPOAA), however, little is known about the "pathway redundancy" of the metabolic networks directing the CPOAA biosynthesis in the cell factories of the polyoxin producer.
Related JoVE Video
Identification of Mur34 as the novel negative regulator responsible for the biosynthesis of muraymycin in Streptomyces sp. NRRL30471.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Muraymycin, a potent translocase I (MraY) inhibitor, is produced by Streptomyces sp. NRRL30471. The muraymycin gene cluster (mur) was recently cloned, and bioinformatic analysis of mur34 revealed its encoding product exhibits high homology to a large family of proteins, including KanI and RacI in individual biosynthetic pathway of kanamycin and ribostamycin. However, the precise role of these proteins remains unknown.
Related JoVE Video
Genome sequences of three tunicamycin-producing Streptomyces Strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396.
J. Bacteriol.
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
We announce the sequencing of Streptomyces chartreusis NRRL 12338 and NRRL 3882 and Streptomyces lysosuperificus ATCC 31396. These are producers of tunicamycins, chartreusins, cephalosporins, holomycins, and calcimycin. The announced genomes, together with the published Streptomyces clavuligerus genome, will facilitate data mining of these secondary metabolites.
Related JoVE Video
Identification and characterization of the pyridomycin biosynthetic gene cluster of Streptomyces pyridomyceticus NRRL B-2517.
J. Biol. Chem.
PUBLISHED: 03-22-2011
Show Abstract
Hide Abstract
Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo.
Related JoVE Video
Effects of chimerism on the mice heart transplanted survival with the bone marrow infusion.
Transpl. Immunol.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
To evaluate the effects of chimerism on the mice heart transplanted survival with the bone marrow infusion.
Related JoVE Video
Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display.
Biomaterials
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Gene therapy is a promising method for osteoarthritis and cartilage injury. However, specifically delivering target genes into chondrocytes is a great challenge because of their non-vascularity and the dense extracellular matrix of cartilage. In our study, we identified a chondrocyte-affinity peptide (CAP, DWRVIIPPRPSA) by phage display technology. Subsequent analysis suggests that the peptide can efficiently interact specifically with chondrocytes without any species specificity. Polyethylenimine (PEI) was covalently modified with CAP to construct a non-viral vector for cartilage-targeted therapy. To investigate the cartilage-targeting property of the CAP-modified vector, FITC-labeled CAP conjugated PEI/DNA particles were injected into rabbit knee joints, and visualized under confocal microscope. Higher concentrations of CAP-modified vector were detected in the cartilage and specifically taken up by chondrocytes compared with a randomly scrambled peptide (SP)-modified vector. To evaluate cartilage-targeting transfection efficiency, the GFP and luciferase genes were delivered into knee joints using CAP- and SP-modified PEI. Cartilage transfections mediated by CAP-modified PEI were much more efficient and specific than those by SP-modified PEI. This result suggests that CAP-modified PEI could be used as a specific cartilage-targeting vector for cartilage disorders.
Related JoVE Video
Effects of chlorpyrifos exposure on kidney Notch2-Jagged1 pathway of early prenatal embryo.
Birth Defects Res. B Dev. Reprod. Toxicol.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
To evaluate the effects of this insecticide on the embryonic development of kidney and to assess the important role of Notch2-Jagged1 pathway in this duration.
Related JoVE Video
Identification of the gene cluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471.
Mol Biosyst
PUBLISHED: 12-23-2010
Show Abstract
Hide Abstract
Muraymycin, a potent translocase I inhibitor with clinical potential, is produced by Streptomyces sp. NRRL 30471. The structure of muraymycin is highly unusual and contains the hexahydro-2-imino-4-pyrimidylglycyl moiety (epicapreomycidine) and an ureido bond. Here we report the identification of the muraymycin gene cluster from Streptomyces sp. NRRL 30471. Sequencing analysis of a 43.4-kb contiguous region revealed 33 ORFs, 26 of which were proposed to be involved in muraymycin biosynthesis. Independent targeted inactivation of mur16 and mur17 directly abolished muraymycin production, demonstrating the role of the genes essential for muraymycin biosynthesis. These data provide insights into the molecular mechanisms for muraymycin biosynthesis, and lay a foundation for the generation of muraymycin derivatives with enhanced bioactivity via the strategies of combinatorial biosynthesis.
Related JoVE Video
Effects of wattle extract on Microcystic aeruginosa growth and the simulated mini fresh water ecosystem.
J Environ Biol
PUBLISHED: 12-17-2010
Show Abstract
Hide Abstract
In recent years, there has been an apparent increase in the occurrence of harmful algalblooms in fresh waters. The value of applying the novel wattle extract (Acacia mimosa) to inhibitalgal growth was assessed. Our results showed that the growth of Microcystis aeruginosa was successfully repressed by the plant extract and resulted in decreased extracellular microcystin-LR production. In the experiments, it showed a very effective inhibition in the stage of exponential growth (the largest decrease in level is 47.3% of the control) especially in nonsterile conditions, and the extract can reduce 14.5-24.7% cell density of the control in the stationary stage. In outdoor experiments, the extract reduced dissolved oxygen and pH, and selectively cut down cyanobacterial cell density to one-third of the control after 36 d of treatment. Accordingly due to competitive inhibition in interspecies, other nanoalgae and small-sized aquatic animals declined, while macrozooplankton increased. Finally more large algae were eliminated and thereby the water treated was clarified and the recovery of the freshwater ecosystem was promoted. Hence, the present study suggested a new and more effective and very low ecological risk approach to reduce nuisance blooms cyanobacteria in eutrophic water
Related JoVE Video
Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis.
Protein Cell
PUBLISHED: 10-18-2010
Show Abstract
Hide Abstract
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an ?, ?-1?,11-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
Related JoVE Video
Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster.
Appl. Environ. Microbiol.
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
Polyoxins consist of 14 structurally variable components which differentiate at three branch sites of the carbon skeleton. Open reading frame (ORF) SAV_4805 of Streptomyces avermitilis, showing similarity to thymine-7-hydroxylase, was proved to enhance the diversity of polyoxins at the C-5 site of the 1-(5-amino-5-deoxy-?-d-allofuranuronosyl) pyrimidine moiety.
Related JoVE Video
ELISA for aging biomarkers induced by telomere dysfunction in human plasma.
J. Biomed. Biotechnol.
PUBLISHED: 05-21-2010
Show Abstract
Hide Abstract
We identified cathelicidin related antimicrobial protein (CRAMP) secreted from telomere dysfunctional bone marrow cells of late generation telomerase knockout mice (G4mTerc(-/-)), increased in blood and various tissues. It can represented human aging and disease. The main aim of this study is to investigate the sensitive direct enzyme-linked immunosorbent assay (ELISA) method to analyze the human aging and disease in plasma and the detailed methods to quantify the direct ELISA of these aging biomarkers.
Related JoVE Video
PolY, a transcriptional regulator with ATPase activity, directly activates transcription of polR in polyoxin biosynthesis in Streptomyces cacaoi.
Mol. Microbiol.
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
polY, a transcriptional regulatory gene in the polyoxin biosynthetic cluster of Streptomyces cacaoi, was analysed, and its deduced product (PolY) showed amino acid sequence homology to AfsR from Streptomyces coelicolor A3(2). PolY contains an OmpR-like DNA binding domain at its N-terminal and an ATPase domain in the middle of the protein. Disruption of polY abolished polyoxin biosynthesis, which could be restored by the integration of a single copy of polY into the chromosome of the disruption mutant. Transcription of polR, a pathway-specific regulatory gene of polyoxin biosynthesis, was controlled by polY. Electrophoretic mobility shift assay and DNase I protection experiments indicated that PolY bound to the promoter region of polR, and the binding site contained a direct nucleotide repeat typical of Streptomyces antibiotic regulatory protein binding sites. PolY exhibited ATPase activity in vitro. Additionally, binding of ADP/ATPgammaS to ATPase domain triggered the oligomerization of PolY and enhanced its DNA binding activity. Consistently, further experiments in vivo demonstrated that changes of ADP/ATP concentrations significantly affected PolY activity in the cell. These results suggested that the ATPase domain might be a sensor of endogenous pool of ADP/ATP, whose change modulated PolY activity under the physiological conditions.
Related JoVE Video
polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis.
Microbiology (Reading, Engl.)
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
The polyoxin (POL) biosynthetic gene cluster (pol) was recently cloned from Streptomyces cacaoi subsp. asoensis. A 3.3 kb DNA fragment carrying an obvious open reading frame (polR), whose deduced product shows sequence similarity to SanG of Streptomyces ansochromogenes and PimR of Streptomyces natalensis, was revealed within the pol gene cluster. Disruption of polR abolished POL production, which could be complemented by the integration of a single copy of polR into the chromosome of the non-producing mutant. The introduction of an extra copy of polR in the wild-type strain resulted in increased production of POLs. The transcription start point (tsp) of polR was determined by S1 mapping. Reverse transcriptase PCR experiments showed that PolR is required for the transcription of 18 structural genes in the pol gene cluster. Furthermore, we showed that polC and polB, the respective first genes of two putative operons (polC-polQ2 and polA-polB) consisting of 16 and 2 of these 18 genes, have similar promoter structures. Gel retardation assays indicated that PolR has specific DNA-binding activity for the promoter regions of polC and polB. Our data suggest that PolR acts in a positive manner to regulate POL production by activating the transcription of at least two putative operons in the pol gene cluster.
Related JoVE Video
Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H.
J. Biol. Chem.
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics.
Related JoVE Video
Effect of black wattle (Acacia mearnsii) extract on blue-green algal bloom control and plankton structure optimization: a field mesocosm experiment.
Water Environ. Res.
Show Abstract
Hide Abstract
A field mesocosm experiment was conducted at the Three Gorges Reservoir to investigate the utility of black wattle extract in controlling blue algal blooms. The mesocosm experiment was divided into two parts: (1) a short-term test to evaluate how black wattle extract inhibits algal blooms in an emergency and (2) a long-term test to evaluate how black wattle extract maintains water quality and prevents algal blooms over a 1-year period. In the short-term test, the results showed that 3 to 4 mg L(-1) black wattle extract could reduce algal biomass in 1 week, whereas serious algal blooms occurred in the untreated control mesocosm. More importantly, the long-term test suggested that black wattle extract played a significant role in plankton structure optimization at lower concentrations of 1 to 2 mg L(-1). In this test, phytoplankton diversity increased, with the dominant species shifting from cyanobacteria to diatoms and other algae. Meanwhile, as water quality improved through the presence of plant extract treatment, the numbers of smaller zooplankton decreased and larger species increased. Therefore, this investigation founded a novel nature plant agent that not only has good effects on algal bloom control, but also restores the aquatic ecosystem.
Related JoVE Video
Association between CASP8 and CASP10 polymorphisms and toxicity outcomes with platinum-based chemotherapy in Chinese patients with non-small cell lung cancer.
Oncologist
Show Abstract
Hide Abstract
Caspase-8 and caspase-10 play crucial roles in both cancer development and chemotherapy efficacy. In this study, we aimed to comprehensively assess single nucleotide polymorphisms (SNPs) of the caspase-8 (CASP8) and caspase-10 (CASP10) genes in relation to toxicity outcomes with first-line platinum-based chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). We genotyped 13 tag SNPs of CASP8 and CASP10 in 663 patients with advanced NSCLC treated with platinum-based chemotherapy regimens. Associations between SNPs and chemotherapy toxicity outcomes were identified in a discovery set of 279 patients and then validated in an independent set of 384 patients. In both the discovery and validation sets, variant homozygotes of CASP8 rs12990906 and heterozygotes of CASP8 rs3769827 and CASP10 rs11674246 and rs3731714 had a significantly lower risk for severe toxicity overall. However, only the association with the rs12990906 variant was replicated in the validation set for hematological toxicity risk. In a stratified analysis, we found that some other SNPs, including rs3769821, rs3769825, rs7608692, and rs12613347, were significantly associated with severe toxicity risk in some subgroups, such as in nonsmoking patients, patients with adenocarcinoma, and patients treated with cisplatin combinations. Consistent results were also found in haplotype analyses. Our results provide novel evidence that polymorphisms in CASP8 and CASP10 may modulate toxicity outcomes in patients with advanced NSCLC treated with platinum-based chemotherapy. If validated, the findings will facilitate the genotype-based selection of platinum-based chemotherapy regimens.
Related JoVE Video
Engineering of an industrial polyoxin producer for the rational production of hybrid peptidyl nucleoside antibiotics.
Metab. Eng.
Show Abstract
Hide Abstract
Polyoxins and nikkomycins are potent antifungal peptidyl nucleoside antibiotics, which inhibit fungal cell wall biosynthesis. They consist of a nucleoside core and one or two independent peptidyl moieties attached to the core at different sites. Making mutations and introducing heterologous genes into an industrial Streptomyces aureochromogenes polyoxin producer, resulted in the production of four polyoxin-nikkomycin hybrid antibiotics designated as polyoxin N and nikkoxin B-D, whose structures were confirmed using high resolution MS and NMR. Two of the hybrid antibiotics, polyoxin N and nikkoxin D, were significantly more potent against some human or plant fungal pathogens than their parents. The data provides an example for rational generation of novel peptidyl nucleoside antibiotics in an industrial producer.
Related JoVE Video
Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo.
Biomaterials
Show Abstract
Hide Abstract
Mesenchymal stem cell (MSC) is a promising cell source candidate in tissue engineering (TE) and regenerative medicine. However, the inability to target MSCs in tissues of interest with high efficiency and engraftment has become a significant barrier for MSC-based therapies. The mobilization and transfer of MSCs to defective/damaged sites in tissues or organs in vivo with high efficacy and efficiency has been a major concern. In the present study, we identified a peptide sequence (E7) with seven amino acids through phage display technology, which has a high specific affinity to bone marrow-derived MSCs. Subsequent analysis suggested that the peptide could ef?ciently interact speci?cally with MSCs without any species specificity. Thereafter, E7 was covalently conjugated onto polycaprolactone (PCL) electrospun meshes to construct an "MSC-homing device" for the recruitment of MSCs both in vitro and in vivo. The E7-conjugated PCL electrospun meshes were implanted into a cartilage defect site of rat knee joints, combined with a microfracture procedure to mobilize the endogenous MSCs. After 7 d of implantation, immunofluorescence staining showed that the cells grown into the E7-conjugated PCL electrospun meshes yielded a high positive rate for specific MSC surface markers (CD44, CD90, and CD105) compared with those in arginine-glycine-aspartic acid (RGD)-conjugated PCL electrospun meshes (63.67% vs. 3.03%; 59.37% vs. 2.98%; and 61.45% vs. 3.82%, respectively). Furthermore, the percentage of CD68 positive cells in the E7-conjugated PCL electrospun meshes was much lower than that in the RGD-conjugated PCL electrospun meshes (5.57% vs. 53.43%). This result indicates that E7-conjugated PCL electrospun meshes absorb much less inflammatory cells in vivo than RGD-conjugated PCL electrospun meshes. The results of the present study suggest that the identified E7 peptide sequence has a high specific affinity to MSCs. Covalently conjugating this peptide on the synthetic PCL mesh significantly enhanced the MSC recruitment of PCL in vivo. This method provides a wide range of potential applications in TE.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.