JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Management of Acute Myeloid Leukemia in the Intensive Care Setting.
J Intensive Care Med
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
Patients with acute myeloid leukemia (AML) who are newly diagnosed or relapsed and those who are receiving cytotoxic chemotherapy are predisposed to conditions such as sepsis due to bacterial and fungal infections, coagulopathies, hemorrhage, metabolic abnormalities, and respiratory and renal failure. These conditions are common reasons for patients with AML to be managed in the intensive care unit (ICU). For patients with AML in the ICU, providers need to be aware of common problems and how to manage them. Understanding the pathophysiology of complications and the recent advances in risk stratification as well as newer therapy for AML are relevant to the critical care provider.
Related JoVE Video
Airway epithelial regulation of pulmonary immune homeostasis and inflammation.
Clin. Immunol.
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
Recent genetic, structural and functional studies have identified the airway and lung epithelium as a key orchestrator of the immune response. Further, there is now strong evidence that epithelium dysfunction is involved in the development of inflammatory disorders of the lung. Here we review the characteristic immune responses that are orchestrated by the epithelium in response to diverse triggers such as pollutants, cigarette smoke, bacterial peptides, and viruses. We focus in part on the role of epithelium-derived interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), as well as CC family chemokines as critical regulators of the immune response. We cite examples of the function of the epithelium in host defense and the role of epithelium dysfunction in the development of inflammatory diseases.
Related JoVE Video
Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 08-09-2013
Show Abstract
Hide Abstract
The origin of cells that make pathologic fibrillar collagen matrix in lung disease has been controversial. Recent studies suggest mesenchymal cells may contribute directly to fibrosis.
Related JoVE Video
Regulation and function of epithelial secreted phospholipase A2 group X in asthma.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 04-26-2013
Show Abstract
Hide Abstract
Indirect airway hyperresponsiveness (AHR) is a fundamental feature of asthma that is manifest as exercise-induced bronchoconstriction (EIB). Secreted phospholipase A2 group X (sPLA2-X) plays a key role in regulating eicosanoid formation and the development of inflammation and AHR in murine models.
Related JoVE Video
Increased density of intraepithelial mast cells in patients with exercise-induced bronchoconstriction regulated through epithelially derived thymic stromal lymphopoietin and IL-33.
J. Allergy Clin. Immunol.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Exercise-induced bronchoconstriction (EIB) is a prototypical feature of indirect airway hyperresponsiveness. Mast cells are implicated in EIB, but the characteristics, regulation, and function of mast cells in patients with EIB are poorly understood.
Related JoVE Video
Role of cells and mediators in exercise-induced bronchoconstriction.
Immunol Allergy Clin North Am
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
A susceptible group of subjects with asthma develops airflow obstruction in response to the transfer of water out of the airways during exercise. The transfer of water or the challenge with a hypertonic solution serves as a strong stimulus to the airway epithelium. Susceptible subjects have epithelial shedding into the airway lumen, and airway inflammation that leads to the overproduction of leukotrienes and other eicosanoids following exercise challenge. The sensory nerves of the airways may serve as a critical link that mediates the effect of eicosanoids, leading to bronchoconstriction and mucus production in response to exercise challenge.
Related JoVE Video
Ischemia-Reperfusion Lung Injury Is Attenuated in MyD88-Deficient Mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Ischemia-reperfusion lung injury is a common cause of acute morbidity and mortality in lung transplant recipients and has been associated with subsequent development of bronchiolitis obliterans syndrome. Recognition of endogenous ligands released during cellular injury (damage-associated molecular patterns; DAMPs) by Toll-like receptors (TLRs), especially TLR4, has increasingly been recognized as a mechanism for inflammation resulting from tissue damage. TLR4 is implicated in the pathogenesis of ischemia-reperfusion injury of multiple organs including heart, liver, kidney and lung. Additionally, activation of TLRs other than TLR4 by DAMPs has been identified in tissues other than the lung. Because all known TLRs, with the exception of TLR3, signal via the MyD88 adapter protein, we hypothesized that lung ischemia-reperfusion injury was mediated by MyD88-dependent signaling. To test this hypothesis, we subjected C57BL/6 wildtype, Myd88 (-/-) , and Tlr4 (-/-) mice to 1 hr of left lung warm ischemia followed by 4 hr of reperfusion. We found that Myd88 (-/-) mice had significantly less MCP-1/CCL2 in the left lung following ischemia-reperfusion as compared with wildtype mice. This difference was associated with dramatically reduced lung permeability. Interestingly, Tlr4 (-/-) mice had only partial protection from ischemia-reperfusion as compared to Myd88 (-/-) mice, implicating other MyD88-dependent pathways in lung injury following ischemia-reperfusion. We also found that left lung ischemia-reperfusion caused remote inflammation in the right lung. Finally, using chimeric mice with MyD88 expression restricted to either myeloid or non-myeloid cells, we found that MyD88-dependent signaling in myeloid cells was necessary for ischemia-reperfusion induced lung permeability. We conclude that MyD88-dependent signaling through multiple receptors is important in the pathogenesis of acute lung inflammation and injury following ischemia and reperfusion.
Related JoVE Video
TLR-2/TLR-4 TREM-1 signaling pathway is dispensable in inflammatory myeloid cells during sterile kidney injury.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Inflammatory macrophages are abundant in kidney disease, stimulating repair, or driving chronic inflammation and fibrosis. Damage associated molecules (DAMPs), released from injured cells engage pattern recognition receptors (PRRs) on macrophages, contributing to activation. Understanding mechanisms of macrophage activation during kidney injury may lead to strategies to alleviate chronic disease. We identified Triggering-Receptor-in-Myeloid-cells (TREM)-1, a regulator of TLR signaling, as highly upregulated in kidney inflammatory macrophages and tested the roles of these receptors in macrophage activation and kidney disease. Kidney DAMPs activated macrophages in vitro, independently of TREM-1, but partially dependent on TLR-2/-4, MyD88. In two models of progressive interstitial kidney disease, TREM-1 blockade had no impact on disease or macrophage activation in vivo, but TLR-2/-4, or MyD88 deficiency was anti-inflammatory and anti-fibrotic. When MyD88 was mutated only in the myeloid lineage, however, there was no bearing on macrophage activation or disease progression. Instead, TLR-2/-4 or MyD88 deficiency reduced activation of mesenchyme lineage cells resulting in reduced inflammation and fibrosis, indicating that these pathways play dominant roles in activation of myofibroblasts but not macrophages. To conclude, TREM-1, TLR2/4 and MyD88 signaling pathways are redundant in myeloid cell activation in kidney injury, but the latter appear to regulate activation of mesenchymal cells.
Related JoVE Video
Role of urokinase plasminogen activator receptor-associated protein in mouse lung.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 09-22-2011
Show Abstract
Hide Abstract
Urokinase plasminogen activator receptor-associated protein (uPARAP, or Endo180) is a transmembrane endocytic receptor that mediates collagen internalization and degradation. uPARAP may be a novel pathway for collagen turnover and matrix remodeling in the lung. The function of uPARAP in lung injury has not been described. We analyzed the pulmonary mechanics of uPARAP(-/-) and wild-type mice at baseline and examined their response after bleomycin instillation. We compared collagen internalization in primary mouse lung fibroblasts (MLFs) from wild-type and uPARAP(-/-) mice using flow cytometry and fluorescent microscopy, and we examined the role of cytokines in regulating uPARAP expression and collagen internalization. We show that uPARAP is highly expressed in the lung, and that uPARAP(-/-) mice have increased lung elastance at baseline and after injury. uPARAP(-/-) mice are protected from changes in lung permeability after acute lung injury and have increased collagen content after bleomycin injury. uPARAP is the primary pathway for internalization of collagens in MLFs. Furthermore, collagen internalization through uPARAP does not require matrix metalloproteinase digestion and is independent of integrins. Mediators of lung injury, including transforming growth factor-?, TNF-?, and IL-1, down-regulate both uPARAP expression and collagen internalization. uPARAP is highly expressed in the murine lung, and loss of uPARAP leads to differences in lung mechanics, lung permeability, and collagen content after injury. uPARAP is required for collagen internalization by MLFs. Thus, uPARAP is a novel pathway that regulates matrix remodeling in the lung after injury.
Related JoVE Video
Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 07-08-2011
Show Abstract
Hide Abstract
Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhanced lung injury in mechanically ventilated mice infected with PVM. C57BL/6 mice and Fas-deficient ("lpr") mice were inoculated intratracheally with PVM. Seven or eight days after PVM inoculation, the mice were subjected to 4 h of MV (tidal volume 10 ml/kg, fraction of inspired O(2) = 0.21, and positive end-expiratory pressure = 3 cm H(2)O). Seven days after PVM inoculation, exposure to MV resulted in less severe injury in lpr mice than in C57BL/6 mice, as evidenced by decreased numbers of polymorphonuclear neutrophils in the bronchoalveolar lavage (BAL), and lower concentrations of the proinflammatory chemokines KC, macrophage inflammatory protein (MIP)-1?, and MIP-2 in the lungs. However, when PVM infection was allowed to progress one additional day, all of the lpr mice (7/7) died unexpectedly between 0.5 and 3.5 h after the onset of ventilation compared with three of the seven ventilated C57BL/6 mice. Parameters of lung injury were similar in nonventilated mice, as was the viral content in the lungs and other organs. Thus, the Fas/FasL system was partly required for the lung inflammatory response in ventilated mice infected with PVM, but attenuation of lung inflammation did not prevent subsequent mortality.
Related JoVE Video
Fas activation in alveolar epithelial cells induces KC (CXCL1) release by a MyD88-dependent mechanism.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Activation of the Fas/Fas ligand (FasL) system is associated with activation of apoptotic and proinflammatory pathways that lead to the development of acute lung injury. Previous studies in chimeric mice and macrophage-depleted mice suggested that the main effector cell in Fas-mediated lung injury is not a myeloid cell, but likely an epithelial cell. The goal of this study was to determine whether epithelial cells release proinflammatory cytokines after Fas activation, and to identify the relevant pathways. Incubation of the murine alveolar epithelial cell line, MLE-12, with the Fas-activating monoclonal antibody, Jo2, resulted in release of the CXC chemokine, KC, in a dose-dependent manner. KC release was not prevented by the pan-caspase inhibitor, zVAD.fmk. Silencing of the adaptor protein, MyD88, with small interfering (si)RNA resulted in attenuation of KC release in response to Jo2. Fas activation resulted in phosphorylation of the mitogen-activated kinases extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK), and pharmacologic inhibition of ERK and JNK attenuated KC release in a dose-response manner. Similarly, primary human small airways epithelial cells released IL-8 in response to soluble FasL, and this was abrogated by inhibition of JNK and ERK. In vivo confirmatory studies showed that MyD88-null mice are protected from Fas-induced acute lung injury. In summary, we conclude that Fas induces KC release in MLE-12 cells by a mechanism requiring MyD88, mitogen-activated protein kinases, and likely activator protein-1.
Related JoVE Video
PKR-dependent CHOP induction limits hyperoxia-induced lung injury.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
Supplemental O(2) is commonly employed in patients with respiratory failure; however, hyperoxia is also a potential contributor to lung injury. In animal models, hyperoxia causes oxidative stress in the lungs, resulting in increased inflammation, edema, and permeability. We hypothesized that oxidative stress from prolonged hyperoxia leads to endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR) and induction of CCAAT enhancer-binding protein homologous protein (CHOP), a transcription factor associated with cell death in the setting of persistent ER stress. To test this hypothesis, we exposed the mouse lung epithelial cell line MLE-12 to 95% O(2) for 8-24 h and evaluated for evidence of UPR induction and CHOP induction. Hyperoxia caused increased CHOP expression without other evidence of UPR activation. Because CHOP expression is preceded by phosphorylation of the ?-subunit of the eukaryotic initiation factor-2 (eIF2?), we evaluated the role of double-stranded RNA-activated protein kinase (PKR), a non-UPR-associated eIF2? kinase. Hyperoxia caused PKR phosphorylation, and RNA interference knockdown of PKR attenuated hyperoxia-induced CHOP expression. In vivo, hyperoxia induced PKR phosphorylation and CHOP expression in the lungs without other biochemical evidence for ER stress. Additionally, Ddit3(-/-) (CHOP-null) mice had increased lung edema and permeability, indicating a previously unknown protective role for CHOP after prolonged hyperoxia. We conclude that hyperoxia increases CHOP expression via an ER stress-independent, PKR-dependent pathway and that increased CHOP expression protects against hyperoxia-induced lung injury.
Related JoVE Video
Eosinophil cysteinyl leukotriene synthesis mediated by exogenous secreted phospholipase A2 group X.
J. Biol. Chem.
PUBLISHED: 10-25-2010
Show Abstract
Hide Abstract
Secreted phospholipase A(2) group X (sPLA(2)-X) has recently been identified in the airways of patients with asthma and may participate in cysteinyl leukotriene (CysLT; C(4), D(4), and E(4)) synthesis. We examined CysLT synthesis and arachidonic acid (AA) and lysophospholipid release by eosinophils mediated by recombinant human sPLA(2)-X. We found that recombinant sPLA(2)-X caused marked AA release and a rapid onset of CysLT synthesis in human eosinophils that was blocked by a selective sPLA(2)-X inhibitor. Exogenous sPLA(2)-X released lysophospholipid species that arise from phospholipids enriched in AA in eosinophils, including phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine as well as plasmenyl phosphatidylcholine and phosphatidylethanolamine. CysLT synthesis mediated by sPLA(2)-X but not AA release could be suppressed by inhibition of cPLA(2)?. Exogenous sPLA(2)-X initiated Ser(505) phosphorylation of cPLA(2)?, an intracellular Ca(2+) flux, and translocation of cPLA(2)? and 5-lipoxygenase in eosinophils. Synthesis of CysLTs in response to sPLA(2)-X or lysophosphatidylcholine was inhibited by p38 or JNK inhibitors but not by a MEK 1/2 inhibitor. A further increase in CysLT synthesis was induced by the addition of sPLA(2)-X to eosinophils under conditions of N-formyl-methionyl-leucyl-phenylalanine-mediated cPLA(2)? activation. These results indicate that sPLA(2)-X participates in AA and lysophospholipid release, resulting in CysLT synthesis in eosinophils through a mechanism involving p38 and JNK MAPK, cPLA(2)?, and 5-lipoxygenase activation and resulting in the amplification of CysLT synthesis during cPLA(2)? activation. Transactivation of eosinophils by sPLA(2)-X may be an important mechanism leading to CysLT formation in the airways of patients with asthma.
Related JoVE Video
Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study.
BMC Pulm Med
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
Mechanical ventilation augments lung inflammation resulting from exposure to microbial products. The objective of this study was to test the hypothesis that ventilator-associated immune modulation requires MyD88-dependent signaling. Because MyD88 is a critical adapter protein utilized for pro-inflammatory signaling by all Toll-like receptors (TLRs), with the exception of TLR3, as well as by the IL-1 and IL-18 receptors, MyD88 dependence would implicate generation of an endogenous soluble ligand recognized by one or more of these receptors during mechanical ventilation and would provide an opportunity for a potential future therapeutic intervention.
Related JoVE Video
Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion.
BMC Pulm Med
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
Ventilator-induced lung injury (VILI) is a recognized complication of mechanical ventilation. Although the specific mechanism by which mechanical ventilation causes lung injury remains an active area of study, the application of positive end expiratory pressure (PEEP) reduces its severity. We have previously reported that VILI is spatially heterogeneous with the most severe injury in the dorsal-caudal lung. This regional injury heterogeneity was abolished by the application of PEEP = 8 cm H2O. We hypothesized that the spatial distribution of lung injury correlates with areas in which cyclical airway collapse and recruitment occurs.
Related JoVE Video
Transglutaminase 2, a novel regulator of eicosanoid production in asthma revealed by genome-wide expression profiling of distinct asthma phenotypes.
PLoS ONE
PUBLISHED: 01-05-2010
Show Abstract
Hide Abstract
A frequent manifestation of asthma, exercise-induced bronchoconstriction (EIB), occurs in 30-50% of asthmatics and is characterized by increased release of inflammatory eicosanoids. The objective of this study was to identify genes differentially expressed in EIB and to understand the function of these genes in the biology of asthma.
Related JoVE Video
How can early, intensive training help a genetic disorder?
Pediatr Ann
PUBLISHED: 04-10-2009
Show Abstract
Hide Abstract
Autism spectrum disorder is 90% genetic but responds dramatically to intensive early training. Recent reports indicate many of the genetic variations associated with ASD involve activity-dependent regulation in the brain, or synapse development that depends on postnatal learning and experience. Intensive training can apparently overcome the effects of these genetic variations, but this should be started as early as 12 months of age for best results. The proposed reason is the decline in brain plasticity after about 6 years. In addition, the problems caused by ASD may cascade on a trajectory toward full expression of the disorder, making it important to interrupt this sequence before it builds. The possibility of reopening plasticity to increase effectiveness of intervention later in life is discussed.
Related JoVE Video
Positive end-expiratory pressure alters the severity and spatial heterogeneity of ventilator-induced lung injury: an argument for cyclical airway collapse.
J Crit Care
PUBLISHED: 03-31-2009
Show Abstract
Hide Abstract
Ventilator-induced lung injury (VILI) is a recognized complication of mechanical ventilation. Although the specific mechanism by which mechanical ventilation causes lung injury remains an active area of study, both alveolar overdistension and cyclical airway collapse and recruitment have been suggested as contributing causes. We hypothesized that mechanical ventilation in the absence of positive end-expiratory pressure (PEEP) causes VILI to be more severe and regionally variable as compared with PEEP = 8 cm H(2)O.
Related JoVE Video
Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung.
Physiol. Genomics
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
Mechanical ventilation is a life-saving intervention in patients with respiratory failure. However, human and animal studies have demonstrated that mechanical ventilation using large tidal volumes (>or=12 ml/kg) induces a potent inflammatory response and can cause acute lung injury. We hypothesized that mechanical ventilation with a "noninjurious" tidal volume of 10 ml/kg would still activate a transcriptional program that places the lung at risk for severe injury. To identify key regulators of this transcriptional response, we integrated gene expression data obtained from whole lungs of spontaneously breathing mice and mechanically ventilated mice with computational network analysis. Topological analysis of the gene product interaction network identified Jun and Fos families of proteins as potential regulatory hubs. Electrophoretic mobility gel shift assay confirmed protein binding to activator protein-1 (AP-1) consensus sequences, and supershift experiments identified JunD and FosB as components of ventilation-induced AP-1 binding. Specific recruitment of JunD to the regulatory region of the F3 gene by mechanical ventilation was confirmed by chromatin immunoprecipitation assay. In conclusion, we demonstrate a novel computational framework to systematically dissect transcriptional programs activated by mechanical ventilation in the lung, and show that noninjurious mechanical ventilation initiates a response that can prime the lung for injury from a subsequent insult.
Related JoVE Video
Epithelial regulation of eicosanoid production in asthma.
Pulm Pharmacol Ther
Show Abstract
Hide Abstract
Alterations in the airway epithelium have been associated with the development of asthma in elite athletes and in subjects that are susceptible to exercise-induced bronchoconstriction (EIB). The syndrome of EIB refers to acute airflow obstruction that is triggered by a period of physical exertion. Asthmatics who are susceptible to EIB have increased levels of cysteinyl leukotrienes (CysLTs, i.e., LTs C?, D?, and E?) in induced sputum and exhaled breath condensate, and greater shedding of epithelial cells into the airway lumen. Exercise challenge in individuals susceptible to this disorder initiates a sustained increase in CysLTs in the airways, and secreted mucin release and smooth muscle constriction, which may be mediated in part through activation of sensory nerves. We have identified a secreted phospholipase A? (sPLA?) with increased levels in the airways of patients with EIB called sPLA? group X(sPLA?-X).We have found that sPLA?-X is strongly expressed in the airway epithelium in asthma. Further,we discovered that transglutaminase 2 (TGM2) is expressed at increased levels in asthma and serves asa regulator of sPLA?-X. Finally, we demonstrated that sPLA?-X acts on target cells such as eosinophils to initiate cellular eicosanoid synthesis. Collectively, these studies identify a novel mechanism linking the airway epithelium to the production of inflammatory eicosanoids by leukocytes.
Related JoVE Video
Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells.
Am. J. Respir. Cell Mol. Biol.
Show Abstract
Hide Abstract
Matrix metalloproteinase-7 (MMP7) expression is quickly up-regulated after injury, and functions to regulate wound repair and various mucosal immune processes. We evaluated the global transcriptional response of airway epithelial cells from wild-type and Mmp7-null mice cultured at an air-liquid interface. The analysis of differentially expressed genes between genotypes after injury revealed an enrichment of functional categories associated with inflammation, cilia, and differentiation. Because these analyses suggested that MMP7 regulated ciliated cell formation, we evaluated the recovery of the airway epithelium in wild-type and Mmp7-null mice in vivo after naphthalene injury, which revealed augmented ciliated cell formation in the absence of MMP7. Moreover, in vitro studies evaluating cell differentiation in air-liquid interface cultures also showed faster ciliated cell production under Mmp7-null conditions compared with wild-type conditions. These studies identified a new role for MMP7 in attenuating ciliated cell differentiation during wound repair.
Related JoVE Video
Lipopolysaccharide-induced lung injury is independent of serum vitamin D concentration.
PLoS ONE
Show Abstract
Hide Abstract
Vitamin D deficiency is increasing in incidence around the world. Vitamin D, a fat-soluble vitamin, has documented effects on the innate and adaptive immune system, including macrophage and T regulatory (Treg) cell function. Since Treg cells are important in acute lung injury resolution, we hypothesized that vitamin D deficiency increases the severity of injury and delays injury resolution in lipopolysaccharide (LPS) induced acute lung injury. Vitamin D deficient mice were generated, using C57BL/6 mice, through diet modification and limited exposure to ultraviolet light. At 8 weeks of age, vitamin D deficient and sufficient mice received 2.5 g/kg of LPS or saline intratracheal. At 1 day, 3 days and 10 days, mice were anesthetized and lung elastance measured. Mice were euthanized and bronchoalveolar lavage fluid, lungs and serum were collected. Ex vivo neutrophil chemotaxis was evaluated, using neutrophils from vitamin D sufficient and deficient mice exposed to the chemoattractants, KC/CXCL1 and C5a, and to bronchoalveolar lavage fluid from LPS-exposed mice. We found no difference in the degree of lung injury. Leukocytes were mildly decreased in the bronchoalveolar fluid of vitamin D deficient mice at 1 day. Ex-vivo, neutrophils from vitamin D deficient mice showed impaired chemotaxis to KC but not to C5a. Vitamin D deficiency modestly impairs neutrophil chemotaxis; however, it does not affect lung injury or its resolution in an LPS model of acute lung injury.
Related JoVE Video
Fas-deficient mice have impaired alveolar neutrophil recruitment and decreased expression of anti-KC autoantibody:KC complexes in a model of acute lung injury.
Respir. Res.
Show Abstract
Hide Abstract
Exposure to mechanical ventilation enhances lung injury in response to various stimuli, such as bacterial endotoxin (LPS). The Fas/FasL system is a receptor ligand system that has dual pro-apoptotic and pro-inflammatory functions and has been implicated in the pathogenesis of lung injury. In this study we test the hypothesis that a functioning Fas/FasL system is required for the development of lung injury in mechanically ventilated mice.
Related JoVE Video
Transmembrane and extracellular domains of syndecan-1 have distinct functions in regulating lung epithelial migration and adhesion.
J. Biol. Chem.
Show Abstract
Hide Abstract
Syndecan-1 is a cell surface proteoglycan that can organize co-receptors into a multimeric complex to transduce intracellular signals. The syndecan-1 core protein has multiple domains that confer distinct cell- and tissue-specific functions. Indeed, the extracellular, transmembrane, and cytoplasmic domains have all been found to regulate specific cellular processes. Our previous work demonstrated that syndecan-1 controls lung epithelial migration and adhesion. Here, we identified the necessary domains of the syndecan-1 core protein that modulate its function in lung epithelial repair. We found that the syndecan-1 transmembrane domain has a regulatory function in controlling focal adhesion disassembly, which in turn controls cell migration speed. In contrast, the extracellular domain facilitates cell adhesion through affinity modulation of ?(2)?(1) integrin. These findings highlight the fact that syndecan-1 is a multidimensional cell surface receptor that has several regulatory domains to control various biological processes. In particular, the lung epithelium requires the syndecan-1 transmembrane domain to govern cell migration and is independent from its ability to control cell adhesion via the extracellular domain.
Related JoVE Video
Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly.
J. Cell. Sci.
Show Abstract
Hide Abstract
After injury, residual epithelial cells coordinate contextual clues from cell-cell and cell-matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion disassembly in migrating lung epithelial cells. Syndecan-1 altered the dynamic exchange of adhesion complex proteins, which in turn regulates migration speed. Moreover, we provide evidence that syndecan-1 controls this entire process through Rap1. Thus, syndecan-1 restrains migration in lung epithelium by activating Rap1 to slow focal adhesion disassembly.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.