JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
KML001, a telomere-targeting drug, sensitizes glioblastoma cells to temozolomide chemotherapy and radiotherapy through DNA damage and apoptosis.
Biomed Res Int
PUBLISHED: 06-26-2014
Show Abstract
Hide Abstract
Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for glioblastoma. Although KML001 alone showed little effects on in vitro survival of glioblastoma cells, cell death by in vitro temozolomide treatment or irradiation was synergistically potentiated by combination with KML001. Since phosphorylated ?-H2AX, cleaved casepase-3, and cleaved PARP were dramatically increased by KML001, the synergistic effects would be mediated by increased DNA damage and subsequent tumor cell apoptosis. Combinatorial effects of KML001 were observed not only in chemo- and radiosensitive glioblastoma cell line, U87MG, but also in the resistant cell line, U251MG. In the U87MG glioblastoma xenograft models, KML001 did not have systemic toxicity but showed synergistic therapeutic effects in combination with temozolomide or irradiation to reduce tumor volumes significantly. These data indicated that KML001 could be a candidate sensitizer to potentiate therapeutic effects of conventional cytotoxic treatment for glioblastoma.
Related JoVE Video
Effects of resveratrol on the insulin signaling pathway of obese mice.
J. Vet. Sci.
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
The present study was conducted to investigate the effects of resveratrol on the insulin signaling pathway in the liver of obese mice. To accomplish this, we administered resveratrol to high fat diet-induced obese mice and examined the levels of protein phosphorylation in the liver using an antibody array. The phosphorylation levels of 10 proteins were decreased in the high fat diet and resveratrol (HFR) fed group relative to the levels in the high fat diet (HF) fed group. In contrast, the phosphorylation levels of more than 20 proteins were increased in the HFR group when compared with the levels of proteins in the HF group. Specifically, the phosphorylation levels of Akt (The308, Tyr326, Ser473) were restored to normal by resveratrol when compared with the levels in the HF group. In addition, the phosphorylation levels of IRS-1 (Ser636/Ser639), PI-3K p85-subunit ?/? (Tyr467/Tyr199), PDK1 (Ser241), GSK-3? (S21) and GSK-3 (Ser9), which are involved in the insulin signaling pathway, were decreased in the HF group, whereas the levels were restored to normal in the HFR group. Overall, the results show that resveratrol restores the phosphorylation levels of proteins involved in the insulin signaling pathway, which were decreased by a high fat diet.
Related JoVE Video
Genetically-engineered Human Neural Stem Cells with Rabbit Carboxyl Esterase Can Target CNS Lymphoma.
Anticancer Res.
PUBLISHED: 12-11-2013
Show Abstract
Hide Abstract
Despite advances in its treatment, CNS lymphoma remains a devastating disease. Taking advantage of the tumour-tropic properties of neural stem cells (NSCs) is a novel therapeutic strategy. To apply this strategy to the treatment of CNS lymphoma, we investigated the role of NSCs expressing carboxyl esterase (HB1.F3.CE), which activates irinotecan.
Related JoVE Video
Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction.
Nat. Chem. Biol.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.
Related JoVE Video
Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors.
Oncol. Rep.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB?435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy.
Related JoVE Video
Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer.
Cancer Lett.
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to tumors. NSCs expressing rabbit carboxyl esterase (F3.CE), which activates CPT-11, significantly inhibited the growth of MDA-MB-435 cells in the presence of CPT-11. F3.CE cells migrated selectively into the brain metastases located in the opposite hemisphere. The treatment also significantly decreased tumor volume in immune-deficient mice bearing MDA-MB-435 tumors when F3.CE cells were transplanted into the contralateral hemisphere. The survival rate was significantly prolonged with the treatment with F3.CE and CPT-11. This strategy may be considered as an effective treatment regimen for brain metastases.
Related JoVE Video
Prognostic implications of the DNA damage response pathway in glioblastoma.
Oncol. Rep.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Genomic instability and resistance to genotoxic therapies for glioblastoma (GBM) suggest aberrant DNA damage response (DDR), since DDR maintains the genomic integrity against genotoxic insults including anti-tumor therapies. To elucidate the biological and clinical meaning of DDR in GBM, we retrospectively investigated the immunohistochemical expression of DDR proteins (ATM, Chk1, Chk2, TopBP1, Rad17, p53, Nbs1, MDC1, ?H2AX and RPA1) in 69 GBM surgical samples and their relation with GBM patient survival. Remarkably, higher expression of ATM revealed significantly longer overall survival (OS) and progression-free survival (PFS) (p<0.05). Upon multivariate analysis, expression level of ATM was an independent factor for longer OS (p=0.020) and longer PFS (p=0.019). Since ATM induces cell cycle arrest or apoptosis through cell cycle regulators in response to genotoxic insults, these results indicate that aberrant DDR signaling through ATM in GBM may be associated with resistance to genotoxic anti-tumor therapeutics. Conclusively, we emphasize that the identification of DDR machinery, which can be involved in unstable genomic status or genotoxic therapies in GBM, is very important to predict patient outcome.
Related JoVE Video
Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents.
Metab. Clin. Exp.
PUBLISHED: 01-26-2011
Show Abstract
Hide Abstract
Resveratrol (RSV) has various metabolic effects, especially with relatively high-dose therapy. However, the ability of RSV to modulate insulin signaling has not been completely evaluated. Here, we determined whether RSV alters insulin signaling in insulin-responsive cells and tissues. The effects of RSV on insulin signaling in 3T3-L1 adipocytes under both insulin-sensitive and insulin-resistant states and in insulin-sensitive tissues of high fat-fed diet-induced obese (DIO) mice were investigated. Insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation (Y612) was suppressed in RSV-treated adipocytes compared with untreated adipocytes, as was the insulin-stimulated Akt phosphorylation (Ser473). However, under an insulin-resistant condition that was made by incubating 3T3-L1 adipocytes in the conditioned medium from lipopolysaccharide-stimulated LAW264.7 cells, RSV reduced inducible nitric oxide synthase expression and I?B? protein degradation and improved insulin-stimulated Akt phosphorylation (Ser473). In DIO mice, relatively low-dose RSV (30 mg/kg daily for 2 weeks) therapy lowered fasting blood glucose level and serum insulin, increased hepatic glycogen content, and ameliorated fatty liver without change in body weight. The insulin-stimulated Akt phosphorylation was decreased in the liver and white adipose tissue of DIO mice, but it was completely normalized by RSV treatment. However, in the skeletal muscle of DIO mice, insulin signaling was not improved by RSV treatment, whereas the phosphorylation of adenosine monophosphate-activated protein kinase ? (Thr172) was improved by it. Our results show that RSV enhances insulin action only under insulin-resistant conditions and suggest that the effect of RSV may depend on the type of tissue being targeted and its metabolic status.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.