JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ovarian insufficiency and pubertal development after hematopoietic stem cell transplantation in childhood.
Pediatr Blood Cancer
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Ovarian insufficiency (OI) and infertility are common and devastating late effects of cancer treatment and hematopoietic stem cell transplantation (HSCT). In children, gonadal insufficiency may subsequently lead to abnormal pubertal development. The aim of this study was to assess the cumulative incidence of OI and the need for hormonal induction of pubertal development after HSCT in childhood. We additionally assessed HSCT-related risk factors for OI.
Related JoVE Video
A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia.
Blood
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
This study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m(2) every 2 weeks) in intensification after receiving native E coli asparaginase in induction. In case of allergy to or silent inactivation of PEGasparaginase, Erwinia asparaginase (20?000 IU/m(2) 2-3 times weekly) was given. Eighty-nine patients were enrolled in the PEGasparaginase study. Twenty (22%) of the PEGasparaginase-treated patients developed an allergy; 7 (8%) showed silent inactivation. The PEGasparaginase level was 0 in all allergic patients (grade 1-4). Patients without hypersensitivity to PEGasparaginase had serum mean trough levels of 899 U/L. Fifty-nine patients were included in the Erwinia asparaginase study; 2 (3%) developed an allergy and none silent inactivation. Ninety-six percent had at least 1 trough level ?100 U/L. The serum asparagine level was not always completely depleted with Erwinia asparaginase in contrast to PEGasparaginase. The presence of asparaginase antibodies was related to allergies and silent inactivation, but with low specificity (64%). Use of native E coli asparaginase in induction leads to high hypersensitivity rates to PEGasparaginase in intensification. Therefore, PEGasparaginase should be used upfront in induction, and we suggest that the dose could be lowered. Switching to Erwinia asparaginase leads to effective asparaginase levels in most patients. Therapeutic drug monitoring has been added to our ALL-11 protocol to individualize asparaginase therapy.
Related JoVE Video
A panel of artificial APCs expressing prevalent HLA alleles permits generation of cytotoxic T cells specific for both dominant and subdominant viral epitopes for adoptive therapy.
J. Immunol.
PUBLISHED: 07-27-2009
Show Abstract
Hide Abstract
Adoptive transfer of virus-specific T cells can treat infections complicating allogeneic hematopoietic cell transplants. However, autologous APCs are often limited in supply. In this study, we describe a panel of artificial APCs (AAPCs) consisting of murine 3T3 cells transduced to express human B7.1, ICAM-1, and LFA-3 that each stably express one of a series of six common HLA class I alleles. In comparative analyses, T cells sensitized with AAPCs expressing a shared HLA allele or autologous APCs loaded with a pool of 15-mer spanning the sequence of CMVpp65 produced similar yields of HLA-restricted CMVpp65-specific T cells; significantly higher yields could be achieved by sensitization with AAPCs transduced to express the CMVpp65 protein. T cells generated were CD8(+), IFN-gamma(+), and exhibited HLA-restricted CMVpp65-specific cytotoxicity. T cells sensitized with either peptide-loaded or transduced AAPCs recognized epitopes presented by each HLA allele known to be immunogenic in humans. Sensitization with AAPCs also permitted expansion of IFN-gamma(+) cytotoxic effector cells against subdominant epitopes that were either absent or in low frequencies in T cells sensitized with autologous APCs. This replenishable panel of AAPCs can be used for immediate sensitization and expansion of virus-specific T cells of desired HLA restriction for adoptive immunotherapy. It may be of particular value for recipients of transplants from HLA-disparate donors.
Related JoVE Video
Atypical varicella zoster infection associated with hemophagocytic lymphohistiocytosis.
Pediatr Blood Cancer
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Two adolescents, on immunosuppressive therapy for graft-versus-host disease, developed hemophagocytic lymphohistiocytosis (HLH) after varicella zoster virus (VZV) reactivation. In the absence of dermatome restricted characteristic skin lesions, VZV reactivation was not immediately recognized and treatment with acyclovir was delayed. The first patient developed optical neuritis and died 2 months after the VZV episode due to massive intracranial hemorrhage. The second patient presented with severe abdominal pain and pancreatitis, followed by atypical skin eruptions, which prompted a faster diagnosis. Both patients recovered from their HLH, the first patient being successfully treated with immunosuppressive agents and the second with VZV treatment only. These two cases demonstrate the difficulties in recognizing VZV reactivation, and in order to start adequate and timely treatment, the need to consider VZV as a possible cause of HLH in severely immunocompromised patients.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.