JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies.
Neurosci Biobehav Rev
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
One fundamental question concerning brain reward mechanisms is to determine how reward-related activity is influenced by the nature of rewards. Here, we review the neuroimaging literature and explicitly assess to what extent the representations of primary and secondary rewards overlap in the human brain. To achieve this goal, we performed an activation likelihood estimation (ALE) meta-analysis of 87 studies (1452 subjects) comparing the brain responses to monetary, erotic and food reward outcomes. Those three rewards robustly engaged a common brain network including the ventromedial prefrontal cortex, ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some variations in the intensity and location of peak activity. Money-specific responses were further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea that abstract secondary rewards are represented in evolutionary more recent brain regions. In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. Together, these results indicate that the computation of experienced reward value does not only recruit a core "reward system" but also reward type-dependent brain structures.
Related JoVE Video
A cross-sectional and follow-up functional MRI study with a working memory task in adolescent anorexia nervosa.
Neuropsychologia
PUBLISHED: 04-26-2010
Show Abstract
Hide Abstract
Structural and functional brain abnormalities have been described in anorexia nervosa (AN). The objective of this study was to examine whether there is abnormal regional brain activation during a working memory task not associated with any emotional stimuli in adolescent patients with anorexia and to detect possible changes after weight recovery. Fourteen children and adolescents (age range 11-18 years) consecutively admitted with DSM-IV diagnosis of AN and fourteen control subjects of similar age were assessed by means of psychopathological scales and functional magnetic resonance imaging (fMRI) during a working memory task. After seven months of treatment and weight recovery, nine AN patients were reassessed. Before treatment, the AN group showed significantly higher activation than controls in temporal and parietal areas and especially in the temporal superior gyrus during performance of the cognitive task. Control subjects did not show greater activation than AN patients in any region. A negative correlation was found between brain activation and body mass index and a positive correlation between activation and depressive symptomatology. At follow-up after weight recovery, AN patients showed a decrease in brain activation in these areas and did not present differences with respect to controls. These results show that adolescent AN patients showed hyperactivation in the parietal and especially the temporal lobe during a working memory task, suggesting that they must make an additional effort to perform at normal levels. This activation correlated with clinical variables. In these young patients, differences with respect to controls disappeared after weight recovery.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.