JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth.
Cancer Lett.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Exosomes are 30-150 nm vesicles secreted by a wide range of mammalian cells that can contain microRNA (miRNA). To test if marrow stromal cell (MSC) exosomes could be used as a vehicle for delivery of anti-tumor miRNAs, we transfected MSCs with a miR-146b expression plasmid, and harvested exosomes released by the MSCs. Intra-tumor injection of exosomes derived from miR-146-expressing MSCs significantly reduced glioma xenograft growth in a rat model of primary brain tumor.
Related JoVE Video
Nicousamide blocks the effects of advanced glycation end products on renal cells.
Eur. J. Pharmacol.
PUBLISHED: 06-20-2011
Show Abstract
Hide Abstract
Advanced glycation end products (AGE) are key factors in the pathogenesis of diabetic nephropathy. AGE can stimulate the expressions of fibrogenic transforming growth factor (TGF-?1) and connective tissue growth factor (CTGF), which in turn induce renal hypertrophy, sclerosis and functional failure. The purpose of this study was to examine nicousamide, a novel coumarin-aspirin derivative, in the treatment of diabetic nephropathy using a renal mesangial and tubular epithelia cell model. RT-PCR and ELISA analyses showed that nicousamide inhibited AGE-induced TGF-?1 and CTGF. Nicousamide blocked AGE-induced G1-arrest in mesangial cells and tubular epithelia by flow cytometry. Suppression of matrix metalloproteinase activity by AGE was restored by nicousamide. This study supports that nicousamide retards diabetic nephropathy by blocking the effects of AGE on renal cells.
Related JoVE Video
Atorvastatin reduces functional deficits caused by photodynamic therapy in rats.
Int. J. Oncol.
PUBLISHED: 03-17-2011
Show Abstract
Hide Abstract
Clinical studies have indicated that photodynamic therapy (PDT) significantly prolonged the median survival of patients with gliomas. Experimental studies demonstrate that increasing optical energy and photosensitizer dose leads to increased volume of tumor necrosis. However, increasing the light dose delivered to the tumor may increase the risks of inducing permanent neurological deficits. In the current study, we sought to test the behavioral deficits induced in normal rats by brain PDT and the neurorestorative effects of atorvastatin on PDT-induced behavioral deficits. Considering its potential as a combination treatment of brain tumors, we investigated both in vitro and in vivo whether atorvastatin treatment promotes brain tumor growth. Non-tumored Fischer rats received PDT (n=18). Nine of the PDT-treated animals were treated with atorvastatin. Control animals underwent the same surgical procedure, but did not receive Photofrin and laser light. PDT-treated animals had significant behavioral deficits on days 2, 5, 7, 9 and 14 after PDT, compared with surgery controls. PDT-treated animals receiving atorvastatin displayed significantly ameliorated behavioral deficits on days 7, 9 and 14 after PDT, compared to PDT-treated rats. In vitro tumor cell viability and growth were evaluated. Atorvastatin did not affect the growth of glioma cells. Fischer rats with intracranial 7-day-old 9L glioma tumor cell implantation were randomly subjected to no treatment, PDT alone, atorvastatin alone, or combined treatment with atorvastatin and PDT (6 rats/group). Our data indicate that atorvastatin did not promote tumor growth in either PDT treated and non-treated rats. However, atorvastatin significantly reduced the cell damage caused by PDT. To further test the mechanisms underlying the atorvastatin-mediated reduction of functional deficits, we investigated the effects of atorvastatin on angiogenesis and synaptogenesis. Our data demonstrate that atorvastatin significantly induced angiogenesis and synaptogenesis in the PDT-damaged brain tissue. Our data indicate that PDT induces functional deficits. Atorvastatin treatment promotes functional restoration after PDT, but does not promote glioma growth in vitro and in vivo. Atorvastatin reduces astrocyte and endothelial cell damage caused by PDT and induces angiogenesis and synaptogenesis after PDT. Thus consideration and further testing of the combination of atorvastatin and PDT for the treatment of glioma is warranted.
Related JoVE Video
TGF-?1 promotes motility and invasiveness of glioma cells through activation of ADAM17.
Oncol. Rep.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
The transforming growth factor ?1 (TGF-?1) belongs to a family of structurally related polypeptide factors. TGF-beta plays an important role in the pathobiology of invasion of malignant gliomas. The objective of the present study was to investigate the impact of TNF-? converting enzyme (TACE/ADAM17) signaling on the process of TGF-?1-stimulated migration and invasion of T98G glioma cells. We found that TGF-?1 increased migration and invasiveness in glioma cells. Addition of the TGF-?1 receptor inhibitor, SB431542, reduced the TGF-?1-stimulated migration and invasiveness of glioma cells. In addition, TGF-?1-induced migration and invasiveness were also blocked by exposure to an ADAM17 inhibitor, TAPI-2. Furthermore, ADAM17 mRNA and protein expression were up-regulated by TGF-?1. Treatment with SB431542 and TAPI-2 blocked TGF-?1-induced ADAM17 protein expression. In summary, these results indicate that TGF-?1 promotes cell migration and invasiveness of glioma cells through stimulation of ADAM17.
Related JoVE Video
Collective behavior of brain tumor cells: the role of hypoxia.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
We consider emergent collective behavior of a multicellular biological system. Specifically, we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. In the first set of experiments, cell migration away from a tumor spheroid was investigated. The second set of experiments was performed in a typical wound-healing geometry: Cells were placed on a substrate, a scratch was made, and cell migration into the gap was investigated. Experiments show a surprising result: Cells under normal and hypoxic conditions have migrated the same distance in the "spheroid" experiment, while in the "scratch" experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.
Related JoVE Video
ADAM17 promotes glioma cell malignant phenotype.
Mol. Carcinog.
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
A disintegrin and metalloproteinase-17 (ADAM17) is involved in proteolytic ectodomain shedding of several membrane-bound growth factors and cytokines. The expression and activity of ADAM17 increase under some pathological conditions such as stroke and cancer. ADAM17 promotes neural progenitor cell migration and contributes to neurogenesis after stroke and breast cancer growth and invasion. In the present study, we sought to elucidate whether ADAM17 contributes to glioma progression. To this end, we examined the role of ADAM17 in the proliferation, invasion, and tube formation of U87 human glioma cells in vitro and tumor growth in vivo. Stable transfection of the U87 cell line with either a plasmid for over-expression of human ADAM17, or a siRNA to ADAM17 was employed in this study to establish high- or low-ADAM17 expression in glioma cells, respectively. For study of mechanism, the ADAM17 inhibitor TAPI-2 and the PI3K-AKT inhibitor LY294002 were used to counteract high-ADAM17 expression and the activated PI3K-AKT pathway, respectively. Proliferation of glioma cells were tested by thiazolyl blue tetrazolium bromide (MTT) assay, bromodeoxyuridine incorporation assay, growth curve, and sulforhodamine B assay. Matrigel invasion assays were used to assess the ability of U87 cells to penetrate the extracellular matrix (ECM). A Matrigel tube formation assay was performed to test capillary tube formation ability. EGFR-PI3K-Akt pathway activation in U87 cells under different ADAM17 expression levels were tested by Western blot. Our data show that ADAM17 promotes the U87 malignant phenotype by increased proliferation, invasion, angiogenesis, and in vivo tumor growth. Tumor growth in nude mice was significantly inhibited by ADAM17 inhibitor and A17-shRNA in vivo transfection. TGF-?, VEGF secretion, and VEGF expression was increased by ADAM17 and counteracted by ADAM17 siRNA, TAPI-2, and LY294002 in U87 cells. ADAM17 activated, whereas ADAM17 siRNA, TAPI-2, and LY294002 deactivated the EGFR-PI3K-AKT signal pathway, which correlated with U87 cell malignant phenotype changes. This study suggests ADAM17 contributes to glioma progression through activation of the EGFR-PI3K-AKT signal pathway.
Related JoVE Video
MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma.
Cancer Invest.
PUBLISHED: 09-27-2010
Show Abstract
Hide Abstract
Human miR-146b-5p is located on chromosome 10q24.3. Loss of the 10q24-26 region is frequently observed in gliomas. Here, we report that miR-146b-5p suppresses expression of epidermal growth factor receptor (EGFR) in human glioblastoma cell lines. Introduction of miR-146b-5p decreases cell invasion, migration, and phosphorylation of protein kinase B (AKT). MiR-146b-5p suppresses translation of EGFR, and binds to the EGFR 3-UTR. Furthermore, analysis of U87-MG laser-capture microdissected cells in tumor-bearing mice indicated that expression of miR-146b-5p was inversely correlated with distance from the tumor core. These findings suggest that reconstitution of miR-146b-5p may be useful for the treatment of this invasive tumor.
Related JoVE Video
Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells.
Eur. J. Pharmacol.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose-dependent manner. BrdU and tube formation assays indicated that gallic acid significantly decreased glioma cell proliferation and tube formation in mouse brain endothelial cells, respectively. In addition, gallic acid decreased U87 cell invasion in vitro. Western blot analysis showed that expression of ADAM17, p-Akt and p-Erk was suppressed by gallic acid in both U87 and U251n cell lines. These data suggest that suppression of ADAM17 and downregulation of PI3K/Akt and Ras/MAPK signaling pathways may contribute to gallic acid-induced decrease of invasiveness. Gallic acid may be a valuable candidate for treatment of brain tumor.
Related JoVE Video
Transcription factor Sp1 induces ADAM17 and contributes to tumor cell invasiveness under hypoxia.
J. Exp. Clin. Cancer Res.
PUBLISHED: 07-28-2009
Show Abstract
Hide Abstract
Expression of the Sp1 transcription factor is induced by hypoxia, and the ADAM17 promoter contains predicted Sp1 binding sites. ADAM17 contributes to hypoxic-induce invasiveness of glioma. In this study, we investigated whether Sp1 transcription factor induces ADAM17 and/or contributes to tumor cell invasiveness in hypoxia.
Related JoVE Video
ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation.
Cancer Biol. Ther.
PUBLISHED: 06-25-2009
Show Abstract
Hide Abstract
A disintegrin and metalloproteinase-17 (ADAM17) is involved in proteolytic ectodomain shedding of several membrane-bound growth factors and cytokines. The expression and activity of ADAM17 increase under some pathological conditions such as stroke and glioma. ADAM17 promotes neural progenitor cell migration and contributes to stroke-induced neurogenesis after stroke and brain tumor growth and invasion. In the present study, we sought to elucidate whether ADAM17 contributes to breast cancer progression and its mechanisms. To this end, we examined the role of ADAM17 in the proliferation, invasion and tube formation of MDA-MB-231 breast cancer cells in vitro. Stable transfection of the MDA-MB-231 cell line with either a plasmid for overexpression of human ADAM17, or a siRNA to ADAM17 was employed in this study to establish high or low ADAM17 expression in breast cancer cells, respectively. For study of mechanism, the ADAM17 inhibitor TAPI-2 and the PI3K-AKT inhibitor LY294002 were used to counteract high ADAM17 expression or the activated PI3K-AKT pathway. Proliferation of MDA-MB-231 breast cancer cells were tested by MTT, Bromodeoxyuridine incorporation assay, growth curve and sulforhodamine B assay. Matrigel invasion assays were used to assess the ability of MDA-MB-231 cells to penetrate the Extra Cellular Matrix. A Matrigel tube formation assay was performed to test capillary tube formation ability. EGFR-PI3K-Akt pathway activation in MDA-MB-231 cells under different ADAM17 expression levels were tested by western blot and ELISA. Our data show that ADAM17 promotes the MDA-MB-231 malignant phenotype by increased proliferation, invasion and angiogenesis. TGFalpha, VEGF secretion and VEGF expression was increasing by ADAM17 and counteracted by ADAM17 siRNA, TAPI-2 and LY294002 in MDA-MB-231 cells. ADAM17 activated, whereas ADAM17 siRNA, TAPI-2 and LY294002 deactivated the EGFR-PI3K-AKT signal pathway, which correlated with MDA-MB-231 cell malignant phenotype changes. This study suggests ADAM17 contributes to breast cancer progression through activation of the EGFR-PI3K-AKT signal pathway.
Related JoVE Video
Simultaneous characterization and quantitation of 11 coumarins in Radix Angelicae Dahuricae by high performance liquid chromatography with electrospray tandem mass spectrometry.
J Pharm Biomed Anal
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
A high performance liquid chromatography with electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) method has been developed to characterize and quantify 11 coumarin compounds in Radix Angelicae Dahuricae simultaneously. By using this HPLC-ESI-MS/MS method, all 11 coumarins were separated and determined within 10min. These coumarins were detected by ESI(+) ionization method and quantified by multiple reaction monitor (MRM). The linear regressions were acquired with r(2)>0.995, respectively. The precision was evaluated by intra- and inter-day tests, and relative standard deviation (R.S.D.) values were reported within the range of 1.14-4.42% and 0.37-4.00%. The recovery studies for the quantified compounds were observed over the range of 92.1-105.6% with R.S.D. values less than 4.55%. It demonstrated that the method developed was successfully applied for identification and quantification of 11 coumarins in Radix Angelicae Dahuricae. The results showed that the contents of coumarins in Radix Angelicae Dahuricae were processed differently and varied significantly.
Related JoVE Video
Tumorigenicity of cortical astrocyte cell line induced by the protease ADAM17.
Cancer Sci.
PUBLISHED: 05-18-2009
Show Abstract
Hide Abstract
The metalloprotease ADAM17 (a.k.a. TACE) plays a pivotal role in the cleavage and activation of membrane-anchored receptor ligands. More recently, it has been revealed that ADAM17 is a potent sheddase of the epidermal growth factor (EGF) family of ligands and regulates epidermal growth factor receptor (EGFR) activity in a variety of tumors. EGFR is a key component of autonomous growth signaling in several tumors, and correlates with the malignancy grade of astrocytoma. In this study, we tested the hypothesis that over-expression of ADAM17 in cortical astrocytes derived from normal brain would induce a progression towards a malignant phenotype. Over-expression of human ADAM17 (hADAM17) in the CTX-TNA2 cortical astrocyte cell line resulted in non-adherent growth, increased proliferation, invasiveness, production of angiogenic factors, and expression of genes associated with immature and/or neoplastic cells. hADAM17 up-regulated EGFR and AKT phosphorylation, and increased proliferation and cell invasion were significantly dependent upon EGFR activity. When implanted in the nude mouse brain, CTX-TNA2 cells induced low histological grade, benign intraventricular gliomas. In contrast, the same astrocytes with hADAM17 formed large malignant gliomas. Taken together, these findings suggest that unregulated ADAM17 activity induces functional changes in astrocytes that significantly advance the malignant phenotype.
Related JoVE Video
XLF-III-43, a novel coumarin-aspirin compound, prevents diabetic nephropathy in rats via inhibiting advanced glycation end products.
Eur. J. Pharmacol.
PUBLISHED: 03-25-2009
Show Abstract
Hide Abstract
Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications. The purpose of this study was to examine the novel coumarin-aspirin compound XLF-III-43 in the inhibition of AGE formation in diabetic nephropathy. In vitro analysis showed XLF-III-43 in a dose-dependent manner decreased glucose induced formation of glycation adducts on albumin and inhibited AGE-lysozyme crosslinking. The streptozotocin-induced diabetic rats were used to investigate the beneficial effects of XLF-III-43 treatment on diabetic nephropathy. Administration of XLF-III-43 significantly decreased (P<0.05) blood urea nitrogen and urinary albumin excretion. Moreover, XLF-III-43 ameliorated kidney hypertrophy, mesangial expansion and glomerulosclerosis in diabetic rats relative to untreated model group. These data correlated with decreased both AGE and downstream markers of AGE stress (TGF-beta1, CTGF, fibronectin and collagen IV fibrolysis) in kidneys of diabetic rats. These data support further development of XLF-III-43 for prevention of nephropathy via inhibition of AGE formation consequent to chronic hyperglycemia.
Related JoVE Video
Dual-color fluorescence imaging in a nude mouse orthotopic glioma model.
J. Neurosci. Methods
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
We sought to establish a new orthotopic glioma model of nude mice by transfer of DsRed2, a red fluorescent protein gene, to malignant glioma cells and to perfuse the tissue with fluorescein isothiocyanate (FITC) dextran in vivo, which would permit the concurrent detection of brain tumor invasion and angiogenesis in vivo by florescence microscopy. 9L or U87 malignant glioma cells with DsRed2 expression were intracerebrally injected into the nude mice. FITC-dextran was administered intravenously to the mice bearing DsRed2-9L or DsRed2-U87 cells immediately before they were sacrificed at 10 days or 15 days after the implantation, respectively. Coronal vibratome sections were examined using 2D and 3D fluorescence microscopy and the results were compared with those examined by routine hematoxylin and eosin (H & E) staining. Angiogenesis induced by glioma was confirmed by two-dimensional and three-dimensional imaging analysis. DsRed2 fluorescence clearly demarcated the primary tumor margins and readily allowed for the visualization of local invasion at the single-cell level in the brain adjacent to tumor. We found that a few tumor cells migrated from the tumor mass along the aberrant microvasculature, but did not extend out of the angiogenic areas. However, locally invasive foci were very difficult to detect by H & E staining. We demonstrated, for the first time, that abnormal vascular structure and glioma cells can be visualized concurrently by fluorescence microscopy. This method is superior to H & E staining for the detection and study of physiologically relevant patterns of brain tumor invasion and angiogenesis in vivo.
Related JoVE Video
Simultaneous quantification of three major triterpenoids in radix asteris by high-performance liquid chromatography with evaporative light scattering detection.
Phytochem Anal
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Radix asteris, with triterpenoids as its main pharmacological effective compounds, has been widely used for moistening the lung, dispersing phlegm and relieving cough. Quantification of the triterpenoids is important for the quality control of Radix asteris.
Related JoVE Video
Intracellular free calcium mediates glioma cell detachment and cytotoxicity after photodynamic therapy.
Lasers Med Sci
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
Photofrin photodynamic therapy (PDT) caused a dose-dependent decrease of enzymatic cell detachment by trypsin/ethylenediamine tetra-acetic acid (EDTA) in human glioma U251n and U87 cells. This happened coincidently with the increase of intracellular free calcium ([Ca(2+)](i)). Thapsigargin, which increased [Ca(2+)](i), induced further decrease in enzymatic cell detachment and increased cytotoxicity. Opposite effects were observed when 1,2-bis(2-aminophenoxy) ethane-N,N,N,N-tetra-acetic acid tetrakis, an intracellular Ca(2+) chelator, was used. PDT-induced changes in [Ca(2+)](i) and cell detachment were not blocked by calcium channel antagonists nickel (Ni(2+)) or nimodipine, nor were they altered when cells were irradiated in a buffer free from Ca(2+) and magnesium (Mg(2+)), suggesting that [Ca(2+)](i) is derived from the internal calcium stores. Decreased cell migration was observed after PDT, as assessed by chemotactic and wound-healing assays. Our findings indicated that internal calcium store-derived [Ca(2+)](i) plays an important role in PDT-induced enzymatic cell detachment decrease and cytotoxicity. Cell migration may be affected by these changes.
Related JoVE Video
Bone marrow stromal cell therapy reduces proNGF and p75 expression in mice with experimental autoimmune encephalomyelitis.
J. Neurol. Sci.
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
Demyelination is prominent in experimental autoimmune encephalomyelitis (EAE). The receptor p75 and its high affinity ligand proNGF are required for oligodendrocyte death after injury. We hypothesize that bone marrow stromal cells (BMSCs) provide therapeutic benefit in EAE mice by reducing proNGF/p75 expression. PBS or BMSCs (2 x 10(circumflex)6) were administered intravenously on the day of EAE onset. Neurological function and demyelination areas were measured. Immunohistochemical staining was used to measure apoptotic oligodendrocytes, expression of proNGF and p75, and the relationship between proNGF and p75 in neural cells. proNGF was used to treat oligodendrocytes in culture with or without BMSCs. EAE mice exhibited neurological function deficit and demyelination, and expression of proNGF and p75 was increased. BMSC treatment improved functional recovery, reduced demyelination area and apoptotic oligodendrocytes, decreased expression of proNGF and p75 compared with PBS treatment. proNGF(+) cells colocalized with neural cell markers, while p75 colocalized with an oligodendrocytic marker, and proNGF colocalized with p75. proNGF induced apoptosis of oligodendrocytes in vitro, and p75 antibody blocked this apoptotic activity. BMSCs reduced p75 expression and apoptotic activity in oligodendrocytes with proNGF treatment. BMSC treatment benefits on EAE mice may be fostered by decreasing the cellular expression of proNGF and p75, thereby reducing oligodendrocyte death.
Related JoVE Video
MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3.
Cancer Lett.
Show Abstract
Hide Abstract
We tested invasion and angiogenesis related mRNA expression and miRNA profiles of glioma. Genes with mRNA expression that changed significantly were selected to predict possible miRNAs that regulate mRNA expression, and were then matched with miRNA results. NRP-2 with the matching miRNA miR-15b, and MMP-3 with the matching miRNA miR-152 were selected for further study. Luciferase activity assay confirmed that miR-15b and miR-152 attenuate expression of NRP-2 and MMP-3 protein by binding to NRP-2 and MMP-3 transcript, respectively. In vitro invasion assay data showed that miR-15b and miR-152 significantly decreased 9L cell invasiveness. In vitro tube formation assay data showed that miR-15b reduced tube formation. A preliminary pathway study indicated that miR-15b and miR-152 deactivated the MEK-ERK pathway via NRP-2 and MMP-3 in 9L cells, respectively.
Related JoVE Video
MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells.
Oncol. Rep.
Show Abstract
Hide Abstract
MicroRNAs are important regulators of gene expression and have been suggested to play a key role in tumorigenesis. In this study, we show that miR-145 is significantly downregulated in glioma cell lines compared to normal brain tissue and negatively regulates tumorigenesis. Restoration of miR-145 in glioma cells significantly reduced in vitro proliferation, migration and invasion. Also, overexpression of miR-145 reduced ADAM17 and EGFR expression. In addition, we tested the hypothesis that the miR-145-mediated suppression of cell proliferation, migration and invasion is, at least in part, due to silencing of ADAM17 and EGFR gene expression. Using luciferase reporters carrying the 3-untranslated region of ADAM17 combined with western blotting, we identified ADAM17 as a direct target of miR-145. Collectively, these results suggest that as a tumor suppressor, miR-145 inhibits not only tumor proliferation, but also cell migration and invasion, and warrants further investigation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.