JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome.
Anesthesiology
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood.
Related JoVE Video
Effects of altered levels of extracellular superoxide dismutase and irradiation on hippocampal neurogenesis in female mice.
Int. J. Radiat. Oncol. Biol. Phys.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study.
Related JoVE Video
Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD.
Free Radic. Biol. Med.
PUBLISHED: 04-28-2009
Show Abstract
Hide Abstract
Ionizing irradiation significantly affects hippocampal neurogenesis and is associated with cognitive impairments; these effects may be influenced by an altered microenvironment. Oxidative stress is a factor that has been shown to affect neurogenesis, and one of the protective pathways that deal with such stress involves the antioxidant enzyme superoxide dismutase (SOD). This study addressed what impact a deficiency in cytoplasmic (SOD1) or mitochondrial (SOD2) SOD has on radiation effects on hippocampal neurogenesis. Wild-type (WT) and SOD1 and SOD2 knockout (KO) mice received a single X-ray dose of 5 Gy, and quantification of the survival and phenotypic fate of newly generated cells in the dentate subgranular zone was performed 2 months later. Radiation exposure reduced neurogenesis in WT mice but had no apparent effect in KO mice, although baseline levels of neurogenesis were reduced in both SOD KO strains before irradiation. Additionally, there were marked and significant differences between WT and both KO strains in how irradiation affected newly generated astrocytes and activated microglia. The mechanism(s) responsible for these effects is not yet known, but a pilot in vitro study suggests a "protective" effect of elevated levels of superoxide. Overall, these data suggest that under conditions of SOD deficiency, there is a common pathway dictating how neurogenesis is affected by ionizing irradiation.
Related JoVE Video
Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging.
Rejuvenation Res
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
Lysophosphatidylcholine (LPC) is a lysolipid, acting as a potent cellular mediator of various biological processes. The purpose of this study was to define the role of LPC as a possible causative factor of disrupted redox balance in aged aorta from rats. In this study, we found elevated serum LPC levels in 24-month-old rats that were correlated with the age-related increase in cytosolic phospholipase A(2) (PLA(2)) activity. We also found that aortas from old rats showed increased 5-lipoxygenase (5-LO) activity. With the LPC-treated endothelial cells (YPEN-1 cells), we observed a rapid generation of reactive species, leading to enhanced oxidative stress. Our further investigations using specific 5-LO inhibitors led to the identification of a 5-LO pathway as the reactive species production source in the LPC-treated cells. Additional validation of this 5-LO pathway was made by the detection of increased leukotriene B4 generation in the LPC-treated cells. These in vitro data supported findings of increased expression and activation of aortic 5-LO in old rats by LPC. Together, our data strongly suggested that LPC caused the enhancement of oxidative stress in aged aorta through reactive species generation by an activated 5-LO pathway. LPC may well be an important contributor to age-related oxidative stress in aging aorta.
Related JoVE Video
A new mouse model for temporal- and tissue-specific control of extracellular superoxide dismutase.
Genesis
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
The extracellular isoform of superoxide dismutase (EC-SOD, Sod3) plays a protective role against various diseases and injuries mediated by oxidative stress. To investigate the pathophysiological roles of EC-SOD, we generated tetracycline-inducible Sod3 transgenic mice and directed the tissue-specific expression of transgenes by crossing Sod3 transgenic mice with tissue-specific transactivator transgenics. Double transgenic mice with liver-specific expression of Sod3 showed increased EC-SOD levels predominantly in the plasma as the circulating form, whereas double transgenic mice with neuronal-specific expression expressed higher levels of EC-SOD in hippocampus and cortex with intact EC-SOD as the dominant form. EC-SOD protein levels also correlated well with increased SOD activities in double transgenic mice. In addition to enabling tissue-specific expression, the transgene expression can be quickly turned on and off by doxycycline supplementation in the mouse chow. This mouse model, thus, provides the flexibility for on-off control of transgene expression in multiple target tissues.
Related JoVE Video
Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Cranial irradiation is widely used in cancer therapy, but it often causes cognitive defects in cancer survivors. Oxidative stress is considered a major cause of tissue injury from irradiation. However, in an earlier study mice deficient in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD KO) showed reduced sensitivity to radiation-induced defects in hippocampal functions. To further dissect the role of EC-SOD in neurogenesis and in response to irradiation, we generated a bigenic EC-SOD mouse model (OE mice) that expressed high levels of EC-SOD in mature neurons in an otherwise EC-SOD-deficient environment. EC-SOD deficiency was associated with reduced progenitor cell proliferation in the subgranular zone of dentate gyrus in KO and OE mice. However, high levels of EC-SOD in the granule cell layer supported normal maturation of newborn neurons in OE mice. Following irradiation, wild-type mice showed reduced hippocampal neurogenesis, reduced dendritic spine densities, and defects in cognitive functions. OE and KO mice, on the other hand, were largely unaffected, and the mice performed normally in neurocognitive tests. Although the resulting hippocampal-related functions were similar in OE and KO mice following cranial irradiation, molecular analyses suggested that they may be governed by different mechanisms: whereas neurotrophic factors may influence radiation responses in OE mice, dendritic maintenance may be important in the KO environment. Taken together, our data suggest that EC-SOD plays an important role in all stages of hippocampal neurogenesis and its associated cognitive functions, and that high-level EC-SOD may provide protection against irradiation-related defects in hippocampal functions.
Related JoVE Video
Paradoxical relationship between Mn superoxide dismutase deficiency and radiation-induced cognitive defects.
PLoS ONE
Show Abstract
Hide Abstract
Radiation therapy of the CNS, even at low doses, can lead to deficits in neurocognitive functions. Reduction in hippocampal neurogenesis is usually, but not always, associated with cognitive deficits resulting from radiation therapy. Generation of reactive oxygen species is considered the main cause of radiation-induced tissue injuries, and elevated levels of oxidative stress persist long after the initial cranial irradiation. Consequently, mutant mice with reduced levels of the mitochondrial antioxidant enzyme, Mn superoxide dismutase (MnSOD or Sod2), are expected to be more sensitive to radiation-induced changes in hippocampal neurogenesis and the related functions. In this study, we showed that MnSOD deficiency led to reduced generation of immature neurons in Sod2-/+ mice even though progenitor cell proliferation was not affected. Compared to irradiated Sod2+/+ mice, which showed cognitive defects and reduced differentiation of newborn cells towards the neuronal lineage, irradiated Sod2-/+ mice showed normal hippocampal-dependent cognitive functions and normal differentiation pattern for newborn neurons and astroglia. However, we also observed a disproportional decrease in newborn neurons in irradiated Sod2-/+ following behavioral studies, suggesting that MnSOD deficiency may render newborn neurons more sensitive to stress from behavioral trainings following cranial irradiation. A positive correlation between normal cognitive functions and normal dendritic spine densities in dentate granule cells was observed. The data suggest that maintenance of synaptic connections, via maintenance of dendritic spines, may be important for normal cognitive functions following cranial irradiation.
Related JoVE Video
Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency.
Semin. Cell Dev. Biol.
Show Abstract
Hide Abstract
Hippocampus plays an important role in learning and memory and in spatial navigation. Production of new neurons that are functionally integrated into the hippocampal neuronal network is important for the maintenance of functional plasticity. In adults, production of new neurons in the hippocampus takes place in the subgranular zone (SGZ) of dentate gyrus. Neural progenitor/stem cells go through processes of proliferation, differentiation, migration, and maturation. This process is exquisitely sensitive to oxidative stress, and perturbation in the redox balance in the neurogenic microenvironment can lead to reduced neurogenesis. Cranial irradiation is an effective treatment for primary and secondary brain tumors. However, even low doses of irradiation can lead to persistent elevation of oxidative stress and sustained suppression of hippocampal neurogenesis. Superoxide dismutases (SODs) are major antioxidant enzymes for the removal of superoxide radicals in different subcellular compartments. To identify the subcellular location where reactive oxygen species (ROS) are continuously generated after cranial irradiation, different SOD deficient mice have been used to determine the effects of irradiation on hippocampal neurogenesis. The study results suggest that, regardless of the subcellular location, SOD deficiency leads to a significant reduction in the production of new neurons in the SGZ of hippocampal dentate gyrus. In exchange, the generation of new glial cells was significantly increased. The SOD deficient condition, however, altered the tissue response to irradiation, and SOD deficient mice were able to maintain a similar level of neurogenesis after irradiation while wild type mice showed a significant reduction in the production of new neurons.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.