JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vitro profiling of the metabolism and drug-drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP.
Xenobiotica
PUBLISHED: 10-29-2014
Show Abstract
Hide Abstract
Abstract 1. The metabolism and drug-drug interaction (DDI) risk of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, were evaluated by in vitro studies using human liver microsomes, human hepatocytes, and recombinant human CYPs. 2. The main metabolite of tofogliflozin was the carboxylated derivative (M1) in human hepatocytes, which was the same as in vivo. The metabolic pathway of tofogliflozin to M1 was considered to be as follows: first, tofogliflozin was catalyzed to the primary hydroxylated derivative (M4) by CYP2C18, CYP4A11 and CYP4F3B, then M4 was oxidized to M1. 3. Tofogliflozin had no induction potential on CYP1A2 and CYP3A4. Neither tofogliflozin nor M1 had inhibition potential on CYPs, with the exception of a weak CYP2C19 inhibition by M1. 4. Not only are multiple metabolic enzymes involved in the tofogliflozin metabolism, but the drug is also excreted into urine after oral administration, indicating that tofogliflozin is eliminated through multiple pathways. Thus, the exposure of tofogliflozin would not be significantly altered by DDI caused by any co-administered drugs. Also, tofogliflozin seems not to cause significant DDI of co-administered drugs because tofogliflozin has no CYP induction or inhibition potency, and the main metabolite M1 has no clinically relevant CYP inhibition potency.
Related JoVE Video
Shared mushroom body circuits underlie visual and olfactory memories in Drosophila.
Elife
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs.
Related JoVE Video
Essential role of the mushroom body in context-dependent CO? avoidance in Drosophila.
Curr. Biol.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Internal state as well as environmental conditions influence choice behavior. The neural circuits underpinning state-dependent behavior remain largely unknown. Carbon dioxide (CO2) is an important olfactory cue for many insects, including mosquitoes, flies, moths, and honeybees [1]. Concentrations of CO2 higher than 0.02% above atmospheric level trigger a strong innate avoidance in the fly Drosophila melanogaster [2, 3]. Here, we show that the mushroom body (MB), a brain center essential for olfactory associative memories [4-6] but thought to be dispensable for innate odor processing [7], is essential for CO2 avoidance behavior only in the context of starvation or in the context of a food-related odor. Consistent with this, CO2 stimulation elicits Ca(2+) influx into the MB intrinsic cells (Kenyon cells: KCs) in vivo. We identify an atypical projection neuron (bilateral ventral projection neuron, biVPN) that connects CO2 sensory input bilaterally to the MB calyx. Blocking synaptic output of the biVPN completely abolishes CO2 avoidance in food-deprived flies, but not in fed flies. These findings show that two alternative neural pathways control innate choice behavior, and they are dependent on the animals internal state. In addition, they suggest that, during innate choice behavior, the MB serves as an integration site for internal state and olfactory input.
Related JoVE Video
In vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach.
J. Pharmacol. Exp. Ther.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
To evaluate the relationship between the in vitro and in vivo potency of sodium-glucose cotransporter (SGLT) inhibitors, a pharmacokinetic and pharmacodynamic (PK-PD) study was performed using normal rats. A highly selective SGLT2 inhibitor, tofogliflozin, and four other inhibitors with different in vitro inhibition potency to SGLT2 and selectivity toward SGLT2, versus SGLT1 were used as test compounds, and the time courses for urinary glucose excretion (UGE) and the plasma glucose and compound concentrations were monitored after administration of the compounds. A PK-PD analysis of the UGE caused by SGLT inhibition was performed on the basis of a nonlinear parallel tube model that took into consideration the consecutive reabsorption by different glucose transport properties of SGLT2 and SGLT1. The model adequately captured the time course of cumulative UGE caused by SGLT inhibition; then, the in vivo inhibition constants (Ki) of inhibitors for both SGLT1 and SGLT2 were estimated. The in vivo selectivity toward SGLT2 showed a good correlation with the in vitro data (r = 0.985; P < 0.05), with in vivo Ki values for SGLT2 in the range of 0.3-3.4-fold the in vitro data. This suggests that in vitro inhibition potency to both SGLT2 and SGLT1 is reflected in vivo. Furthermore, the complementary role of SGLT1 to SGLT2 and how selectivity toward SGLT2 affects the inhibitory potency for renal glucose reabsorption were discussed using the PK-PD model.
Related JoVE Video
Compensatory regulation of dopamine after ablation of the tyrosine hydroxylase gene in the nigrostriatal projection.
J. Biol. Chem.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
The tyrosine hydroxylase (TH; EC 1.14.16.2) is a rate-limiting enzyme in the dopamine synthesis and important for the central dopaminergic system, which controls voluntary movements and reward-dependent behaviors. Here, to further explore the regulatory mechanism of dopamine levels by TH in adult mouse brains, we employed a genetic method to inactivate the Th gene in the nigrostriatal projection using the Cre-loxP system. Stereotaxic injection of adeno-associated virus expressing Cre recombinase (AAV-Cre) into the substantia nigra pars compacta (SNc), where dopaminergic cell bodies locate, specifically inactivated the Th gene. Whereas the number of TH-expressing cells decreased to less than 40% in the SNc 2 weeks after the AAV-Cre injection, the striatal TH protein level decreased to 75%, 50%, and 39% at 2, 4, and 8 weeks, respectively, after the injection. Thus, unexpectedly, the reduction of TH protein in the striatum, where SNc dopaminergic axons innervate densely, was slower than in the SNc. Moreover, despite the essential requirement of TH for dopamine synthesis, the striatal dopamine contents were only moderately decreased, to 70% even 8 weeks after AAV-Cre injection. Concurrently, in vivo synthesis activity of l-dihydroxyphenylalanine, the dopamine precursor, per TH protein level was augmented, suggesting up-regulation of dopamine synthesis activity in the intact nigrostriatal axons. Collectively, our conditional Th gene targeting method demonstrates two regulatory mechanisms of TH in axon terminals for dopamine homeostasis in vivo: local regulation of TH protein amount independent of soma and trans-axonal regulation of apparent L-dihydroxyphenylalanine synthesis activity per TH protein.
Related JoVE Video
Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly, Drosophila melanogaster.
J. Neurosci.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Sleep is a unique physiological state, which is behaviorally defined, and is broadly conserved across species from mammals to invertebrates such as insects. Because of the experimental accessibility provided by various novel animal models including the fruit fly, Drosophila melanogaster, there have been significant advances in the understanding of sleep. Although the physiological functions of sleep have not been fully elucidated, accumulating evidence indicates that sleep is necessary to maintain the plasticity of neuronal circuits and, hence, is essential in learning and memory. Calcineurin (Cn) is a heterodimeric phosphatase composed of CnA and CnB subunits and known to function in memory consolidation in the mammalian brain, but its neurological functions in the fruit fly are largely unknown. Here, we show that Cn is an important regulator of sleep in Drosophila. A pan-neuronal RNA interference-mediated knockdown of Cn expression resulted in sleep loss, whereas misexpression of the constitutively active form of a CnA protein led to increased sleep. Furthermore, CnA knockdown also impaired the retention of aversive olfactory memory. These results indicate a role for Cn and calcium-dependent signal transduction in sleep and memory regulation and may bring insight into the relationship between them.
Related JoVE Video
Pharmacokinetic and pharmacodynamic modeling of the effect of an sodium-glucose cotransporter inhibitor, phlorizin, on renal glucose transport in rats.
Drug Metab. Dispos.
PUBLISHED: 06-28-2011
Show Abstract
Hide Abstract
A pharmacokinetic and pharmacodynamic (PK-PD) model for the inhibitory effect of sodium-glucose cotransporter (SGLT) inhibitors on renal glucose reabsorption was developed to predict in vivo efficacy. First, using the relationship between renal glucose clearance and plasma glucose level in rats and both the glucose affinity and transport capacity obtained from in vitro vesicle experiments, a pharmacodynamic model analysis was performed based on a nonlinear parallel tube model to express the renal glucose transport mediated by SGLT1 and SGLT2. This model suitably expressed the relationship between plasma glucose level and renal glucose excretion. A PK-PD model was developed next to analyze the inhibitory effect of phlorizin on renal glucose reabsorption. The PK-PD model analysis was performed using averaged concentrations of both the drug and glucose in plasma and the corresponding renal glucose clearance. The model suitably expressed the concentration-dependent inhibitory effect of phlorizin on renal glucose reabsorption. The in vivo inhibition constants of phlorizin for SGLT in rats were estimated to be 67 nM for SGLT1 and 252 nM for SGLT2, which are similar to the in vitro data reported previously. This suggests that the in vivo efficacy of SGLT inhibitors could be predicted from an in vitro study based on the present PK-PD model. The present model is based on physiological and biochemical parameters and, therefore, would be helpful in understanding individual differences in the efficacy of an SGLT inhibitor.
Related JoVE Video
Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.
Nat. Neurosci.
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.
Related JoVE Video
Quantitative prediction of mechanism-based inhibition caused by mibefradil in rats.
Drug Metab. Dispos.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
It was previously demonstrated that mibefradil, which shows mechanism-based inhibition in humans, also caused drug-drug interactions (DDIs) with midazolam (MDZ) in rats. In this study, we aimed to quantitatively predict the DDIs observed in rats using a physiologically based pharmacokinetic (PBPK) model from in vitro inactivation parameters. For more precise predictions, contribution ratios of cytochrome P450 (P450) isozymes involved in MDZ metabolism and inactivation parameters of mibefradil against each isozyme were incorporated in the predictive model. The evaluation of metabolic rate using recombinant P450s suggested that CYP3A2 and CYP2C11 contributed to 89 and 11% of MDZ metabolism, respectively. Inactivation studies of mibefradil against the two isozymes showed that the maximal inactivation rate constants (k(inact)) were considerable in both isozymes (0.231-0.565 min(-1)), whereas the inhibitor concentration producing half the k(inact) (K(I, app)) of CYP3A2 (0.263-0.410 ?M) was a good deal lower than that for CYP2C11 (6.82-11.4 ?M). As a result of predicting the DDIs using the PBPK model, predicted increases in areas under the concentration-time curve of MDZ with coadministration of mibefradil (284 and 510% at 6 and 12 mg/kg mibefradil, respectively) closely corresponded to the observed values (226 and 545%, respectively). From those results, it was thought that the construction of a predictive model for DDIs using the PBPK model in detail would enable us to quantitatively predict in vivo DDIs from in vitro data. This approach to predict DDIs on the basis of the contributing isozymes would be important for predicting clinical DDIs of drugs metabolized by multiple enzymes.
Related JoVE Video
Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization.
Nat. Biotechnol.
PUBLISHED: 08-31-2010
Show Abstract
Hide Abstract
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibodys lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.
Related JoVE Video
Quantitative analysis of the effect of supersaturation on in vivo drug absorption.
Mol. Pharm.
PUBLISHED: 08-12-2010
Show Abstract
Hide Abstract
The purpose of this study is to clarify the effects of intestinal drug supersaturation on solubility-limited nonlinear absorption. Oral absorption of a novel farnesyltransferase inhibitor (FTI-2600) from its crystalline free base and its HCl salt was determined in dogs. To clarify the contribution of supersaturation on improving drug absorption, in vivo intraluminal concentration of FTI-2600 after oral administration was estimated from the pharmacokinetics data using a physiologically based model. Dissolution and precipitation characteristics of FTI-2600 in a biorelevant media were investigated in vitro using a miniscale dissolution test and powder X-ray diffraction analysis. In the in vitro study, the HCl salt immediately dissolved but precipitated rapidly. The metastable amorphous free base precipitant, which did not convert into the stable crystalline free base in the simulated intestinal fluids for several hours, generated a 5-fold increase in dissolved concentration compared to the equilibrium solubility of the crystalline free base. By computer simulation, the intraluminal drug concentration after administration of the free base was estimated to reach the saturated solubility, indicating solubility-limited absorption. On the other hand, administration of the HCl salt resulted in an increased intraluminal concentration and the plasma concentration was 400% greater than that after administration of the free base. This in vivo/in vitro correlation of the increased drug concentrations in the small intestine provide clear evidence that not only the increase in the dissolution rate, but also the supersaturation phenomenon, improved the solubility-limited absorption of FTI-2600. These results indicate that formulation technologies that can induce supersaturation may be of great assistance to the successful development of poorly water-soluble drugs.
Related JoVE Video
VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody.
Protein Eng. Des. Sel.
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
Thrombopoietin receptor agonist humanized VB22B single-chain diabody (hVB22B (scFv)(2)) was found to be expressed as a mixture of two conformational isomers, a single-chain diabody form and a bivalent scFv form, which had different V(H)/V(L) (variable region of the heavy chain/light chain) association patterns. The single-chain diabody form showed significantly higher biological activity than the bivalent scFv form and, when incubated at elevated temperatures, exhibited novel isomerization to the inactive bivalent scFv form. Therefore, therapeutic development of hVB22B (scFv)(2) would require separation of the purified single-chain diabody form from the mixture of the two conformational isomers and also inhibition of isomerization into an inactive bivalent scFv form during storage. Novel V(H)/V(L) interface engineering in hVB22 (scFv)(2), in which hydrogen bonding between H39 and L38 was substituted with electrostatic interaction to enhance the desired V(H)/V(L) association and inhibit the undesired V(H)/V(L) association, enabled selective expression of the desired conformational isomer without any reduction in biological activity or thermal stability. Moreover, V(H)/V(L) interface-engineered hVB22 (scFv)(2) was completely resistant to isomerization. Because the hydrogen bonding interaction between H39 and L38 and the surrounding residues are highly conserved in human antibody sequences, V(H)/V(L) interface engineering could be generally applied to various (scFv)(2) molecules for selective expression and inhibition of the isomerization of conformational isomers.
Related JoVE Video
Specific dopaminergic neurons for the formation of labile aversive memory.
Curr. Biol.
PUBLISHED: 06-04-2010
Show Abstract
Hide Abstract
A paired presentation of an odor and electric shock induces aversive odor memory in Drosophila melanogaster. Electric shock reinforcement is mediated by dopaminergic neurons, and it converges with the odor signal in the mushroom body (MB). Dopamine is synthesized in approximately 280 neurons that form distinct cell clusters and is involved in a variety of brain functions. Recently, one of the dopaminergic clusters (PPL1) that includes MB-projecting neurons was shown to signal reinforcement for aversive odor memory. As each dopaminergic cluster contains multiple types of neurons with different projections and physiological characteristics, functional understanding of the circuit for aversive memory requires cellular identification. Here, we show that MB-M3, a specific type of dopaminergic neurons in the PAM cluster, is preferentially required for the formation of labile memory. Strikingly, flies formed significant aversive odor memory without electric shock when MB-M3 was selectively stimulated together with odor presentation. In addition, we identified another type of dopaminergic neurons in the PPL1 cluster, MB-MP1, which can induce aversive odor memory. As MB-M3 and MB-MP1 target the distinct subdomains of the MB, these reinforcement circuits might induce different forms of aversive memory in spatially segregated synapses in the MB.
Related JoVE Video
Prediction of drug-drug interactions based on time-dependent inhibition from high throughput screening of cytochrome P450 3A4 inhibition.
Drug Metab. Pharmacokinet.
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
A method of assessing the risk of drug-drug interaction (DDI) caused by mechanism-based inhibition (MBI) was developed for early-stage drug development using cytochrome P450 (CYP) 3A4 inhibition screening data. CYP3A4 inhibition was evaluated using a fluorescent substrate with or without preincubation containing an inhibitor. The results showed that five well-known mechanism-based inhibitors, but not the competitive inhibitor ketoconazole, had lower IC(50) after preincubation, suggesting the utility of the IC(50) shift by preincubation to discern mechanism-based inhibitors. A method to approximately predict the change in the area under the concentration-time curve (AUC) of a co-administered drug by MBI was found using IC(50) shift data and the unbound mean plasma concentration of the inhibitor. From our predictions of change in the AUC for 38 drugs using this method, all mechanism-based inhibitors causing change in the AUC of more than 200% were predicted to be high risk. In conclusion, our method provides a simple assessment of the risk of DDI from mechanism-based inhibitors, especially in the early stages of drug development.
Related JoVE Video
Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function.
J Control Release
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
Novel hybrid hyaluronan (HA) hydrogel encapsulating nanogels was designed for sustained delivery of protein. HA modified with 2-aminoethyl methacrylate was cross-linked via Michael addition in the presence of cholesteryl group-bearing pullulan (CHP) nanogels. The nanogels were physically entrapped and well dispersed in a three-dimensional network of chemically cross-linked HA (HA gel). Therapeutic peptides and proteins, such as glucagon-like peptide-1, insulin and erythropoietin, were spontaneously trapped in the CHP nanogels in the HA gel just by immersing hybrid hydrogels into the drug solutions. CHP/protein complex nanogels were released from the hybrid hydrogels in a sustained manner both in vitro and in vivo. The release was controlled by the cross-linking density and the degradability of the HA gel, modulated by the initial gelation condition. The synergy between the CHP nanogel as a drug reservoir and the HA gel as a nanogel-releasing matrix of the hybrid hydrogel system simultaneously achieved both simple drug loading and controlled release with no denaturation of the protein drugs. This is a new method of fabricating biodegradable controlled release matrix with molecular chaperone-like activity for therapeutic proteins.
Related JoVE Video
Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity.
PLoS Genet.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45beta, GADD45gamma, Inhibin beta-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus.
Related JoVE Video
HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with alpha-adaptin.
J. Biol. Chem.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
HM1.24/Bst2/CD317 is a protein highly expressed in multiple myeloma cells and has unique topology with two membrane anchor domains, an NH2-terminal transmembrane domain and a glycosylphosphatidylinositol attached to the COOH terminus. We show here that human HM1.24 is localized not only on the cell surface but also in the trans-Golgi network and/or recycling endosomes, where it resides in detergent-resistant microdomains, lipid rafts. In contrast to other glycosylphosphatidylinositol-anchored proteins, HM1.24 was internalized from lipid rafts on the cell surface by clathrin-mediated endocytosis. Interestingly, a non-canonical tyrosine-based motif, which contains two tyrosine residues, Tyr-6 and Tyr-8, present in the NH2-terminal cytoplasmic tail, was essential for endocytosis through interaction with an Deltaa-adaptin, but not mu2-subunit, of the AP-2 complex. Indeed, an appendage domain of alpha-adaptin was identified as a protein interacting with the cytoplasmic tail of HM1.24. Furthermore, overexpression of the appendage domain of alpha-adaptin in cells depleted of alpha-adaptin could rescue the clathrin-mediated endocytosis of HM1.24 but not of the transferrin receptor. Taken together, our findings suggest that clathrin-dependent endocytosis of human HM1.24 from the cell surface lipid rafts is mediated by direct interaction with alpha-adaptin.
Related JoVE Video
TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues.
J. Orthop. Res.
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
We previously demonstrated that VEGF and its receptors were expressed in human herniated discs (HD). TNF-alpha induced VEGF, resulting in neovascularization of disc tissues in a model of HD. The goal of the current research was to investigate the precise role of TNF-alpha-induced VEGF and the mechanism of angiogenesis in disc tissues. We performed ELISAs, Western blots, and immunohistological examinations to assess the role of TNF-alpha-induced VEGF using organ disc cultures with wild type, TNF receptor 1-null (TNF-RI(null)), or TNF receptor 2-null (TNF-RII(null)) mice. VEGF induction was inhibited when we used TNF-RI(null)-derived disc tissues. NF-kappaB pathway inhibitors also strongly suppressed VEGF induction. Thus, TNF-alpha induced VEGF expression in disc cells primarily through the NF-kappaB pathway. In addition, VEGF immunoreactivity was detected predominantly in annulus fibrosus cells and increased after TNF-alpha stimulation. TNF-alpha treatment also resulted in CD31 expression on endothelial cells and formation of an anastomosing network. In contrast, angiogenic activity was strongly inhibited in the presence of NF-kappaB inhibitors or anti-VEGF antibody. Our data show angiogenesis activity in disc tissues is regulated by VEGF and the NF-kappaB pathway, both of which are induced by TNF-alpha. The level of angiogenic activity in disc tissues was closely related to aging. Because neovascularization of HD is indispensable for HD resorption, the prognosis of HD and the rate of the resorption process in patients may vary as a function of the patients age.
Related JoVE Video
The mushroom body of adult Drosophila characterized by GAL4 drivers.
J. Neurogenet.
PUBLISHED: 01-10-2009
Show Abstract
Hide Abstract
The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as "Kenyon cells." Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the gamma, alpha/beta, and alpha/beta neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.
Related JoVE Video
O-linked glucosylation of a therapeutic recombinant humanised monoclonal antibody produced in CHO cells.
Eur J Pharm Biopharm
Show Abstract
Hide Abstract
An unpredictable modification of a therapeutic recombinant humanised monoclonal antibody (rh-mAbX) produced using CHO cells was found. LC/MS analysis of rh-mAbX indicated the presence of heterogeneity in the light chain with a corresponding mass shift of 162Da compared to the theoretical mass. To characterise the heterogeneity, that is, the attached moiety, several analyses were performed. Peptide mapping of rh-mAbX indicated that the attached moiety was located in the amino acid sequence from Leu20 to Lys45, which is a part of the variable region of the light chain. The peptide was efficiently purified in two-steps by RP-HPLC by utilising two different types of RP columns. N-terminal sequencing and LC/MS/MS analysis of the peptide suggested that Ser29 of the light chain was the modification site, and that the attached moiety was a single O-linked hexose. HPAEC-PAD analysis following ?-elimination indicated the presence of an O-linked glucose in the modified peptide. Monosaccharide composition analysis after acid hydrolysis supported this result. The content of antibodies containing this species was determined to be approximately 10% by Lys-C peptide mapping detected at 280nm. Thus, this study demonstrated the formation of a unique O-linked glucosylation posttranslational modification in a recombinant humanised monoclonal antibody produced in CHO cells.
Related JoVE Video
A GAL4-driver line resource for Drosophila neurobiology.
Cell Rep
Show Abstract
Hide Abstract
We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and ventral nerve cord. We present image data on 6,650 lines. Using both manual and machine-assisted annotation, we describe the expression patterns in the most useful lines. We illustrate the utility of these data for identifying novel neuronal cell types, revealing brain asymmetry, and describing the nature and extent of neuronal shape stereotypy. The GAL4 lines allow expression of exogenous genes in distinct, small subsets of the adult nervous system. The set of DNA fragments, each driving a documented expression pattern, will facilitate the generation of additional constructs for manipulating neuronal function.
Related JoVE Video
Pharmacokinetic and pharmacodynamic modeling for the effect of sodium-glucose cotransporter inhibitors on blood glucose level and renal glucose excretion in db/db mice.
J Pharm Sci
Show Abstract
Hide Abstract
The purpose of this study is to characterize the relationship between pharmacokinetics (PK) and pharmacodynamics (PD) of sodium-glucose cotransporter (SGLT) inhibitors. PK-PD studies of SGLT inhibitors (CH4941527 and T-1095), which have different half-life and selectivity to SGLT2, were performed using db/db mice. The time courses of compound concentration in plasma, blood glucose (BG), and renal glucose excretion were measured after a single oral administration of each SGLT inhibitor. An indirect-response PK-PD model was developed, in which it was assumed that an SGLT inhibitor enhances renal glucose excretion and the enhanced glucose excretion reduces BG. In the PK-PD study, both SGLT inhibitors increased renal glucose excretion and reduced BG in a dose-dependent manner. The present PK-PD model could suitably capture the effect of SGLT inhibitors and the effect shown suggested that the BG reduction could be explained by the enhanced renal glucose excretion. There were no great differences in the estimated PD parameters between the two inhibitors and they were comparable to the data from previously reported pharmacological studies. The present PK-PD model is helpful for understanding the plasma concentration-dependent effect of SGLT inhibitors on renal glucose excretion and BG.
Related JoVE Video
A subset of dopamine neurons signals reward for odour memory in Drosophila.
Nature
Show Abstract
Hide Abstract
Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.
Related JoVE Video
Three dopamine pathways induce aversive odor memories with different stability.
PLoS Genet.
Show Abstract
Hide Abstract
Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.
Related JoVE Video
Alteration of intracellular secretory acute phase response proteins expressed in human hepatocyte induced by exposure with interleukin-6.
Cytokine
Show Abstract
Hide Abstract
Interleukin-6 (IL-6) is a principal proinflammatory cytokine inducing the acute phase response in various tissues, including liver. Here, we adopt the FD-LC-MS/MS method, consisting of fluorogenic derivatization (FD), separation by liquid chromatography (LC), and identification of proteins by LC-tandem mass spectrometry (MS/MS), to reveal how exposure to IL-6 alters temporally the intracellular secretory acute phase response (sAPR) proteins expressed in human hepatocytes as compared to non-exposure. Nine altered sAPR proteins were identified in cultures in response to IL-6. Seven of them (serum amyloid A protein, haptoglobin, fibrinogen ? chain, fibrinogen ? chain, fibrinogen ? chain, ?(1)-acid glycoprotein and ?(1)-antitrypsin) were significantly increased and two (?(2)-glycoprotein 1 and transferrin) were significantly decreased in response to IL-6. In addition, the transmission speed of transferrin might be much faster than the other sAPR proteins. These results suggest a different molecular mechanism for protein synthesis and the secretory pathway among the sAPR proteins. In this study, we observed the simultaneously and temporally altered expression of sAPR proteins which had been induced by exposure to IL-6 in human hepatocytes, in contrast to previous reports, in all of which the proteins were tested from the time they were secreted into the medium from the cells.
Related JoVE Video
Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila.
Nat. Neurosci.
Show Abstract
Hide Abstract
A fundamental duty of any efficient memory system is to prevent long-lasting storage of poorly relevant information. However, little is known about dedicated mechanisms that appropriately trigger production of long-term memory (LTM). We examined the role of Drosophila dopaminergic neurons in the control of LTM formation and found that they act as a switch between two exclusive consolidation pathways leading to LTM or anesthesia-resistant memory (ARM). Blockade, after aversive olfactory conditioning, of three pairs of dopaminergic neurons projecting on mushroom bodies, the olfactory memory center, enhanced ARM, whereas their overactivation conversely impaired ARM. Notably, blockade of these neurons during the intertrial intervals of a spaced training precluded LTM formation. Two pairs of these dopaminergic neurons displayed sustained calcium oscillations in naive flies. Oscillations were weakened by ARM-inducing massed training and were enhanced during LTM formation. Our results indicate that oscillations of two pairs of dopaminergic neurons control ARM levels and gate LTM.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.