JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Lactobacillus gasseri SBT2055 induces TGF-? expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine.
PLoS ONE
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA(+) cell population in Peyer's patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-?, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-? signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-? did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-? was critical for the production of BAFF, IL-6, IL-10, and TGF-? itself from LG2055-stimulated BMDC. These results demonstrate that TGF-? was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.
Related JoVE Video
Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice.
Sci Rep
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
The Lactobacillus gasseri SBT2055 (LG2055) is a probiotic lactic acid bacterium with properties such as bile tolerance and ability to improve the intestinal environment. In this study, we established that the oral administration of LG2055 exhibits efficacy to protect mice infected with the influenza virus A/PR8. The body weight losses were lower with the LG2055 administration after the PR8 virus infection. At 5 days after the infection, the virus titer was significantly decreased as was the amount of produced IL-6 in the lung tissue, the number of total cells in the bronchoalveolar lavage fluid was reduced by the LG2055 administration. The expression of the Mx1 and Oas1a genes, critical for the viral clearance in the lung tissues was increased by the pre-treatment with LG2055. These findings suggest that the LG2055 administration is effective for the protection against influenza A virus infection by the down-regulation of viral replication through the induction of antiviral genes expression.
Related JoVE Video
Carnitine deficiency is associated with late-onset hypogonadism and depression in uremic men with hemodialysis.
Aging Male
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Abstract Late-onset hypogonadism (LOH) and depression contribute to cardiovascular disease (CVD) in male hemodialysis (HD) patients. Carnitine deficiency is frequently observed in HD patients, playing a role in CVD. We examined whether carnitine deficiency was independently associated with LOH and depression in these patients. Twenty-six male HD patients underwent determinations of serum levels of free carnitine and testosterone. Status of LOH and depression were evaluated by questionnaires using aging male symptoms' (AMS) scale and self-rating depression scale (SDS), respectively. Free carnitine and testosterone levels in male HD patients were significantly lower than those in age-matched healthy male subjects. Linear regression analysis showed that AMS scale was positively associated with SDS. Univariate regression analysis revealed that total carnitine (inversely), free carnitine (inversely) and HD duration were correlated with AMS scale. Multiple stepwise regression analysis revealed that free carnitine was an independent determinant of AMS scale. Furthermore, free carnitine was also independently correlated with SDS in male HD patients. This study demonstrated that decreased free carnitine levels were independently associated with AMS scale and SDS in male HD patients. The observations suggest that decreased free carnitine levels could be a marker and therapeutic target of LOH and depression in uremic men with HD.
Related JoVE Video
Lactobacillus helveticus SBT2171 inhibits lymphocyte proliferation by regulation of the JNK signaling pathway.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Lactobacillus helveticus SBT2171 (LH2171) is a lactic acid bacterium with high protease activity and used in starter cultures in the manufacture of cheese. We recently reported that consumption of cheese manufactured using LH2171 alleviated symptoms of dextran sodium sulfate (DSS)-induced colitis in mice. In this study, we have examined whether LH2171 itself exerts an inhibitory effect on the excessive proliferation of lymphocytes. We found that LH2171 inhibited the proliferation of LPS-stimulated mouse T and B cells, and the human lymphoma cell lines, Jurkat and BJAB. Cell cycle analysis showed an accumulation of LH2171-treated BJAB cells in the G2/M phase. Further, phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun was reduced by LH2171 in BJAB cells. Subsequently, expression of cell division cycle 2 (CDC2), regulated by the JNK signaling pathway and essential for G2/M phase progression, was inhibited by LH2171. It was also demonstrated that intraperitoneal administration of LH2171 strongly alleviated symptoms of collagen-induced arthritis (CIA) in mice. These findings suggest that LH2171 inhibits the proliferation of lymphocytes through a suppression of the JNK signaling pathway and exerts an immunosuppressive effect in vivo.
Related JoVE Video
Enterococcus faecalis FK-23 affects alveolar-capillary permeability to attenuate leukocyte influx in lung after influenza virus infection.
Springerplus
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
Infection with influenza A virus, one of the most common life-threatening viruses, causes the accumulation of inflammatory cells in the lung, which is directly correlated with influenza-associated morbidity and mortality. In this study, we investigated the potential of lysozyme-treated Enterococcus faecalis FK-23 (LFK) to prevent influenza in influenza virus-infected mice. C57BL/6N mice were orally administered LFK and intranasally infected with influenza virus A/Puerto Rico/8/34 (H1N1) at lethal doses. After infection with influenza A virus, the survival rate of the LFK-administered mice was significantly higher than that of saline-administered mice. Staining of lung sections with hematoxylin-eosin, and cell counts of lung and bronchoalveolar lavage fluid showed that oral administration of LFK suppressed the excessive infiltration of leukocytes into the lung after viral infection. Extravasation assay revealed that the arrest was mediated by modulation of pulmonary alveolar-capillary permeability. Expression levels of genes involved in matrix degradation, which are correlated with vascular permeability, were downregulated in LFK-administered mice. These findings suggest that stabilizing the integrity of the alveolar-capillary barrier by the administration of LFK improves survival rate.
Related JoVE Video
Development of an infection screening system for entry inspection at airport quarantine stations using ear temperature, heart and respiration rates.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
After the outbreak of severe acute respiratory syndrome (SARS) in 2003, many international airport quarantine stations conducted fever-based screening to identify infected passengers using infrared thermography for preventing global pandemics. Due to environmental factors affecting measurement of facial skin temperature with thermography, some previous studies revealed the limits of authenticity in detecting infectious symptoms. In order to implement more strict entry screening in the epidemic seasons of emerging infectious diseases, we developed an infection screening system for airport quarantines using multi-parameter vital signs. This system can automatically detect infected individuals within several tens of seconds by a neural-network-based discriminant function using measured vital signs, i.e., heart rate obtained by a reflective photo sensor, respiration rate determined by a 10-GHz non-contact respiration radar, and the ear temperature monitored by a thermography. In this paper, to reduce the environmental effects on thermography measurement, we adopted the ear temperature as a new screening indicator instead of facial skin. We tested the system on 13 influenza patients and 33 normal subjects. The sensitivity of the infection screening system in detecting influenza were 92.3%, which was higher than the sensitivity reported in our previous paper (88.0%) with average facial skin temperature.
Related JoVE Video
Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury.
Kidney Int.
PUBLISHED: 08-07-2013
Show Abstract
Hide Abstract
Ischemia/reperfusion injury is the leading cause of acute tubular necrosis. Nitric oxide has a protective role against ischemia/reperfusion injury; however, the role of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in ischemia/reperfusion injury remains unclear. ADMA is produced by protein arginine methyltransferase (PRMT) and is mainly degraded by dimethylarginine dimethylaminohydrolase (DDAH). Here we examined the kinetics of ADMA and PRMT and DDAH expression in the kidneys of ischemia/reperfusion-injured mice. After the injury, DDAH-1 levels were decreased and renal and plasma ADMA values were increased in association with renal dysfunction. Renal ADMA was correlated with 8-hydroxy-2-deoxyguanosine, a marker of oxidative stress. An antioxidant, N-acetylcysteine, or a proteasomal inhibitor, MG-132, restored these alterations. Infusion of subpressor dose of ADMA exacerbated renal dysfunction, capillary loss, and tubular necrosis in the kidneys of ischemia/reperfusion-injured wild mice, while damage was attenuated in DDAH transgenic mice. Thus, ischemia/reperfusion injury-induced oxidative stress may reduce DDAH expression and cause ADMA accumulation, which may contribute to capillary loss and tubular necrosis in the kidney.Kidney International advance online publication, 9 October 2013; doi:10.1038/ki.2013.398.
Related JoVE Video
Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction.
Diab Vasc Dis Res
PUBLISHED: 06-13-2013
Show Abstract
Hide Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, plays a role in endothelial dysfunction, an initial step of atherosclerosis. Advanced glycation end products (AGEs) also contribute to accelerated atherosclerosis. However, a pathophysiological crosstalk between ADMA and AGEs remains unclear. In this study, we investigated the relationship between ADMA and AGE level in patients with end-stage renal disease (ESRD) due to diabetic nephropathy. We also examined whether and how AGEs increased ADMA generation by cultured endothelial cells (ECs). Plasma ADMA levels were positively associated with serum AGE level and were inversely correlated with endothelial function determined by flow-mediated vasodilatation. AGEs dose dependently increased reactive oxygen species (ROS) generation in ECs, which was blocked by antisense DNA raised against receptor for AGEs (RAGE). Furthermore, AGEs decreased messenger RNA (mRNA) level of dimethylarginine dimethylaminohydrolase (DDAH)-II, an enzyme for ADMA degradation, reduced its total enzymatic activity and resultantly increased ADMA, all of which were completely blocked by an antioxidant, N-acetylcysteine. These results suggest that the AGE-RAGE-mediated ROS generation could be involved in endothelial dysfunction in diabetic ESRD patients partly by increasing the ADMA generation via suppression of DDAH activity in ECs.
Related JoVE Video
Electrocatalytic oxidation of water observed on a nano-gold/palladium electrode.
Chem. Commun. (Camb.)
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
New and unknown electrocatalytic oxidation of water was found to occur on a nano-gold attached palladium electrode. Since the oxidation potential was negative enough to that of well-known normal oxidation of water to form O2, the direct use of water as a fuel, instead of alcohols, might be possible using the nano-gold/palladium electrode.
Related JoVE Video
DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy.
Diabetes
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.
Related JoVE Video
Effects of switching from calcium carbonate to lanthanum carbonate on bone mineral metabolism in hemodialysis patients.
Ther Apher Dial
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Phosphate binders are useful for the treatment of hyperphosphatemia in hemodialysis (HD) patients. This study was performed to examine the effects of switching from calcium carbonate (CC) to lanthanum carbonate (LC) on bone mineral metabolism and inflammatory markers in HD patients. We conducted 29 stable HD patients receiving CC, which was replaced by LC and followed-up for 12 weeks. Patients underwent determinants of blood chemistries such as serum calcium (Ca), phosphorus, parathyroid hormone (PTH) and vitamin D status, and interleukin-6 (IL-6) mRNA levels in whole blood cells were evaluated by real-time PCR just before and after the treatment with LC. Corrected Ca [corrected] levels were significantly reduced, but serum phosphorus levels (P levels) were unchanged after LC treatment. Switching to LC increased whole-PTH, osteocalcin, 1,25(OH)(2) D(3) levels and 1,25(OH)(2) D(3)/25(OH)D(3) ratio. 1,25(OH)(2) D(3)/25(OH)D(3) ratio was negatively correlated with HD duration. Furthermore, whole blood cell IL-6 mRNA levels were significantly reduced by LC treatment. We provided that the switching from CC to LC improved Ca overload and ameliorated vitamin D and inflammatory status in HD patients. These observations suggest that LC may play a protective role for the progression of atherosclerosis and vascular calcification in these patients.
Related JoVE Video
Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots.
Plant Cell Physiol.
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
Among three genes for cytosolic glutamine synthetase (OsGS1;1, OsGS1;2 and OsGS1;3) in rice (Oryza sativa L.) plants, the OsGS1;2 gene is known to be mainly expressed in surface cells of roots, but its function was not clearly understood. We characterized knock-out mutants caused by the insertion of an endogenous retrotransposon Tos17 into exon 2 of OsGS1;2. Homozygously inserted mutants showed severe reduction in active tiller number and hence panicle number at harvest. Other yield components, such as spikelet number per panicle, 1,000-spikelet weight and proportion of well ripened grains, were nearly identical between the mutants and wild-type plants. When the contents of free amino acids in roots were compared between the mutants and the wild type, there were marked reductions in contents of glutamine, glutamate, asparagine and aspartate, but a remarkable increase in free ammonium ions in the mutants. Concentrations of amino acids and ammonium ions in xylem sap behaved in a similar fashion. Re-introduction of OsGS1;2 cDNA under the control of its own promoter into the knock-out mutants successfully restored yield components to wild-type levels as well as ammonium concentration in xylem sap. The results indicate that GS1;2 is important in the primary assimilation of ammonium ions taken up by rice roots, with GS1;1 in the roots unable to compensate for GS1;2 functions.
Related JoVE Video
Type-I interferon is critical for FasL expression on lung cells to determine the severity of influenza.
PLoS ONE
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Infection of influenza A virus in mammals induces hyper lung pneumonia, which often causes lethal diseases. FasL is a specific ligand of Fas, which is a type-I transmembrane protein to induce cell death. Previously, it has been reported that the hyper induction of gene expression associated with Fas signal is observed in lethal influenza A virus infection. More importantly, it was also reported that functional mutation of the FasL gene protects the host against influenza A virus infection. These observations suggest that induction of FasL signal is functionally associated with the severity of influenza. However, regulation of the induction of FasL or Fas by influenza A virus infection is still unknown. Here, we demonstrated that FasL is induced after the viral infection, and inhibition of the Fas/FasL signal by treatment with a recombinant decoy receptor for FasL (Fas-Fc) increases the survival rate of mice after lethal infection of influenza A virus as well as functional mutation of the FasL gene in gld/gld mice. In addition, the induction level of FasL gene expression in the lung was correlated with the severity of influenza. We also showed that a variety of types of cells in the lung express FasL after the viral infection. Furthermore, type-I interferon induced by the viral infection was shown to be critical for induction of FasL protein expression in the lung. These findings suggested that expression of FasL protein induced by type-I IFN on the lung cell surface is critical to determine the severity of influenza.
Related JoVE Video
Osteopontin is critical to determine symptom severity of influenza through the regulation of NK cell population.
Biochem. Biophys. Res. Commun.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
Osteopontin (OPN) is involved in exacerbating various inflammatory diseases. A severe pulmonary inflammation is frequently found in lethal influenza A virus (IAV) infection. However, the function of OPN against the infection was poorly understood. Here, we demonstrate an importance of OPN on immune response and disease severity after IAV infection. We found that the expression level of OPN was increased in mice infected with IAV. The OPN knockout (KO) mice exhibited a severe pathological phenotype and the survival rate decreased after the lethal IAV infection, compared to the wild type mice, while the survival rate increased in OPN transgenic (Tg) mice. The population of natural killer (NK) cells significantly decreased in OPN KO mice at day 5 after the infection, whereas, it increased in OPN Tg mice. These results suggest that OPN plays an important role in host defense against IAV infection through the regulation of NK cell population.
Related JoVE Video
Osteopontin modulates the generation of memory CD8+ T cells during influenza virus infection.
J. Immunol.
PUBLISHED: 10-21-2011
Show Abstract
Hide Abstract
The adaptive immune system generates memory cells, which induce a rapid and robust immune response following secondary Ag encounter. Memory CD8(+) T cells are a critical component of protective immunity against infections and cancers. Therefore, understanding the mechanism whereby memory CD8(+) T cells are generated and maintained is important for inducing effective memory CD8(+) T cell response. Recent studies have demonstrated that the inflammatory cytokine IL-12 favors the generation of terminal effector CD8(+) T cells rather than memory precursor effector CD8(+) T cells by regulating the expression of the transcription factor T-bet. In this study, we report that the inflammatory cytokine osteopontin (Opn) modulates memory CD8(+) T cell generation during influenza virus infection. Although Opn wild-type and Opn knockout (KO) mice had similar numbers of virus-specific effector CD8(+) T cells, virus-specific effector CD8(+) T cells generated in Opn KO mice showed low levels of T-bet expression and an increased memory precursor cell population compared with cells generated in Opn wild-type mice. This resulted in the persistently increased number of memory CD8(+) T cells in Opn KO mice. Studies with bone marrow-derived dendritic cells demonstrated that Opn deficiency in bone marrow-derived dendritic cells results in low levels of IL-12 production in response to the stimulation with influenza virus. Thus, we hypothesize that Opn modulates the generation of memory precursor effector CD8(+) T cells by regulating cytokine milieu during the acute phase of virus infection. This finding may provide new insight into the role of Opn in adaptive immune response.
Related JoVE Video
CSF-1-dependent red pulp macrophages regulate CD4 T cell responses.
J. Immunol.
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
The balance between immune activation and suppression must be regulated to maintain immune homeostasis. Tissue macrophages (M?s) constitute the major cellular subsets of APCs within the body; however, how and what types of resident M?s are involved in the regulation of immune homeostasis in the peripheral lymphoid tissues are poorly understood. Splenic red pulp M? (RPMs) remove self-Ags, such as blood-borne particulates and aged erythrocytes, from the blood. Although many scattered T cells exist in the red pulp of the spleen, little attention has been given to how RPMs prevent harmful T cell immune responses against self-Ags. In this study, we found that murine splenic F4/80(hi)Mac-1(low) M?s residing in the red pulp showed different expression patterns of surface markers compared with F4/80(+)Mac-1(hi) monocytes/M?s. Studies with purified cell populations demonstrated that F4/80(hi)Mac-1(low) M?s regulated CD4(+) T cell responses by producing soluble suppressive factors, including TGF-? and IL-10. Moreover, F4/80(hi)Mac-1(low) M?s induced the differentiation of naive CD4(+) T cells into functional Foxp3(+) regulatory T cells. Additionally, we found that the differentiation of F4/80(hi)Mac-1(low) M?s was critically regulated by CSF-1, and in vitro-generated bone marrow-derived M?s induced by CSF-1 suppressed CD4(+) T cell responses and induced the generation of Foxp3(+) regulatory T cells in vivo. These results suggested that splenic CSF-1-dependent F4/80(hi)Mac-1(low) M?s are a subpopulation of RPMs and regulate peripheral immune homeostasis.
Related JoVE Video
Quality control of photosystem II: FtsH hexamers are localized near photosystem II at grana for the swift repair of damage.
J. Biol. Chem.
PUBLISHED: 10-04-2010
Show Abstract
Hide Abstract
The reaction center-binding D1 protein of Photosystem II is oxidatively damaged by excessive visible light or moderate heat stress. The metalloprotease FtsH has been suggested as responsible for the degradation of the D1 protein. We have analyzed the distribution and subunit structures of FtsH in spinach thylakoids and various membrane fractions derived from the thylakoids using clear native polyacrylamide gel electrophoresis and Western blot analysis. FtsH was found not only in the stroma thylakoids but also in the Photosystem II-enriched grana membranes. Monomeric, dimeric, and hexameric FtsH proteases were present as major subunit structures in thylakoids, whereas only hexameric FtsH proteases were detected in Triton X-100-solubilized Photosystem II membranes. Importantly, among the membrane fractions examined, hexameric FtsH proteases were most abundant in the Photosystem II membranes. In accordance with this finding, D1 degradation took place in the Photosystem II membranes under light stress. Sucrose density gradient centrifugation analysis of thylakoids and the Photosystem II membranes solubilized with n-dodecyl-?-d-maltoside and a chemical cross-linking study of thylakoids showed localization of FtsH near the Photosystem II light-harvesting chlorophyll-protein supercomplexes in the grana. These results suggest that part of the FtsH hexamers are juxtapositioned to PSII complexes in the grana in darkness, carrying out immediate degradation of the photodamaged D1 protein under light stress.
Related JoVE Video
Association of asymmetric dimethylarginine with severity of kidney injury and decline in kidney function in IgA nephropathy.
Am. J. Nephrol.
PUBLISHED: 05-04-2010
Show Abstract
Hide Abstract
Asymmetric dimethylarginine (ADMA) plays important roles in the pathogenesis of chronic kidney disease (CKD). We have recently found that ADMA is involved in glomerular sclerosis and tubulointerstitial fibrosis in an animal model of CKD. However, relationship between plasma ADMA levels and severity of renal damage in CKD patients remains unknown.
Related JoVE Video
Blockade of interaction of alpha9 integrin with its ligands hinders the formation of granulation in cutaneous wound healing.
Lab. Invest.
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
The wound healing is a complex process consisting of inflammatory reaction, proliferation of mesenchymal cells, and formation and contraction of granulation tissue. The integrin receptors have crucial roles in this process. Recently, alpha9 integrin has also been detected on keratinocytes within wound sites. However, its functional significance at various wound healing processes was not fully elucidated. To address the role of alpha9 integrin in wound healing process, we made a full-thickness skin excisional wound and treated mice with anti-alpha9 integrin antibody. It has been shown that wound healing process was divided into three distinct phases: first, the re-epithelialization phase, second, the phase of granulation tissue formation, and finally the phase of contraction of granulation tissue. We found that contraction of granulation tissue was not impaired by blocking the interaction of alpha9 integrin with its ligands, indicating that alpha9 integrin is not involved in myofibroblast differentiation. It is noteworthy that the formation of granulation tissue, as characterized by dense vimentin and CD31-positive area, was impaired. The hindrance of granulation tissue formation is because of the inhibition of adhesion and migration of alpha9 integrin-positive dermal fibroblasts. In conclusion, alpha9 integrin is involved in the formation of granulation tissue through regulating migration and adhesion of dermal fibroblasts in the full-thickness skin excisional wound model.
Related JoVE Video
Variability and fluctuation in running gait cycle of trained runners and non-runners.
Gait Posture
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
The current study examined variability and fluctuation in the running gait cycle, focusing on differences between trained distance runners and non-runners. The two groups of participants performed treadmill running at 80%, 100%, and 120% of their preferred speed for 10 min. Stride-interval time-series were recorded during running using footswitches. The average preferred speed was significantly higher for the trained runners than for the non-runners. The trained runners showed significantly smaller variability of stride interval than did the non-runners, and at the same time the scaling exponent alpha evaluated by detrended fluctuation analysis tended to be smaller for the trained runners. These results suggest that expert runners can reduce variability in the trained movement without loosing dynamical degrees of freedom for spatiotemporal organization of the gait pattern.
Related JoVE Video
The differential amino acid requirement within osteopontin in alpha4 and alpha9 integrin-mediated cell binding and migration.
Matrix Biol.
PUBLISHED: 06-20-2009
Show Abstract
Hide Abstract
Osteopontin (OPN) contains at least two major integrin recognition domains, Arg159-Gly-Asp161 (RGD) and Ser162-Val-Val-Tyr-Gly-Leu-Arg168 (SVVYGLR), recognized by alphavbeta3 and alpha5beta1 and alpha4 and alpha9 integrins, respectively. OPN is specifically cleaved by thrombin and matrix metalloproteinase (MMP)-3 or MMP-7 at a position of Arg168/Ser169 (R/S) and Gly166/Leu167 (G/L), respectively. We in this study examined the requirement of residues within SVVYGLR for the alpha4 and alpha9 integrin recognition and how MMP-cleavage influences the integrin recognition. The residues, Val164, Tyr165, and Leu167 are critical for alpha4 and alpha9 integrin recognition in both cell adhesion and cell migration. The residue Arg168 is additionally required for alpha9 integrin recognition in cell adhesion and this explains why alpha9 integrin binds to only thrombin cleaved form of OPN. alpha4 integrin is able to bind to SVVYG (MMP-cleaved form of RAA OPN-N half), while alpha9 integrin is not, supporting the above notion that Arg168 is additionally required for alpha9 integrin-mediated cell adhesion. The residue Val163 is important for alpha4, but not for alpha9 integrin recognition in cell migration. Importantly, we found that the replacement of Arg168 by Ala (R168A mutant) induces the augmentation of cell migration via alpha4 and alpha9 integrins.
Related JoVE Video
Alpha9 integrin and its ligands constitute critical joint microenvironments for development of autoimmune arthritis.
J. Immunol.
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
Osteopontin is critically involved in rheumatoid arthritis; however, the molecular cross-talk between osteopontin and joint cell components that leads to the inflammatory joint destruction is largely unknown. We found that not only osteopontin but also tenascin-C and their common receptor, alpha(9) integrin, are expressed at arthritic joints. The local production of osteopontin and tenascin-C is mainly due to synovial fibroblasts and, to a lesser extent, synovial macrophages. Synovial fibroblasts and macrophages express alpha(9) integrin, and autocrine and paracrine interactions of alpha(9) integrin on synovial fibroblasts and macrophages and its ligands contribute differently to the production of proinflammatory cytokines and chemokines. alpha(9) integrin is also involved in the recruitment and accumulation of inflammatory cells. Inhibition of alpha(9) integrin function with an anti-alpha(9) integrin Ab significantly reduces the production of arthrogenic cytokines and chemokines and ameliorates ongoing arthritis. Thus, we identified alpha(9) integrin as a critical intrinsic regulator that controls the development of autoimmune arthritis.
Related JoVE Video
Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice.
Nephrol. Dial. Transplant.
Show Abstract
Hide Abstract
Matrix metalloproteinase-2 (MMP-2) is responsible for the degradation of various types of extracellular matrix (ECM) proteins such as type IV collagen. Decreased MMP-2 expression and activity has been generally thought to contribute to increased accumulation of ECM at the advanced stage of diabetic nephropathy. However, the kinetics and role of MMP-2 in the early phase of diabetic nephropathy remain unclear. To address this issue, we examined whether streptozotocin (STZ)-induced early diabetic nephropathy was accelerated in MMP-2 knockout (KO) mice.
Related JoVE Video
Pathological examination of lung tissues in influenza a virus-infected mice.
Jpn. J. Infect. Dis.
Show Abstract
Hide Abstract
This study examined pathological changes in the lung tissues of young and aged mice infected with influenza virus. Young mice inoculated with influenza virus showed body weight loss at 4 days post-infection (dpi), meanwhile body weight decrease started from 9 dpi in the aged mice. We histopathologically examined the lungs of these mice. Immunohistochemical examination revealed that viral antigen-positive bronchiolar and alveolar epithelial cell numbers at 3 dpi were significantly higher in young mice than in the aged ones. Further, viral antigen-positive cells were observed at 9 dpi in the aged mice, but not in the young ones. Diffuse and severe bronchointerstitial pneumonia characterized by the accumulation of polymorphonuclear leukocytes (PMNs) was observed in young mice at 6 dpi. Histopathological changes in the aged mice were milder than those in the young mice. Moreover, T cell and macrophage accumulation in the lungs was significantly higher in the young mice than in the aged mice at 9 dpi. These results suggest that there may be a correlation between the relatively low level of infiltration of PMNs, macrophages, and T lymphocytes and the delayed body weight loss and longer lasting infections observed in the lungs of the aged mice. These findings provide detailed insights into the age-specific course of infection in young and aged populations with associated differences in lung pathology.
Related JoVE Video
?-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice.
PLoS ONE
Show Abstract
Hide Abstract
?-(1?3)-D-glucans with ?-(1?6)-glycosidic linked branches produced by mushrooms, yeast and fungi are known to be an immune activation agent, and are used in anti-cancer drugs or health-promoting foods. In this report, we demonstrate that oral administration of Aureobasidium pullulans-cultured fluid (AP-CF) enriched with the ?-(1?3),(1?6)-D-glucan exhibits efficacy to protect mice infected with a lethal titer of the A/Puerto Rico/8/34 (PR8; H1N1) strain of influenza virus. The survival rate of the mice significantly increased by AP-CF administration after sublethal infection of PR8 virus. The virus titer in the mouse lung homogenates was significantly decreased by AP-CF administration. No significant difference in the mRNA expression of inflammatory cytokines, and in the population of lymphocytes was observed in the lungs of mice administered with AP-CF. Interestingly, expression level for the mRNA of virus sensors, RIG-I (retinoic acid-inducible gene-I) and MDA5 (melanoma differentiation-associated protein 5) strongly increased at 5 hours after the stimulation of A. pullulans-produced purified ?-(1?3),(1?6)-D-glucan (AP-BG) in murine macrophage-derived RAW264.7 cells. Furthermore, the replication of PR8 virus was significantly repressed by pre-treatment of AP-BG. These findings suggest the increased expression of virus sensors is effective for the prevention of influenza by the inhibition of viral replication with the administration of AP-CF.
Related JoVE Video
Proteinuria elevates asymmetric dimethylarginine levels via protein arginine methyltransferase-1 overexpression in a rat model of nephrotic syndrome.
Life Sci.
Show Abstract
Hide Abstract
Proteinuria is an independent risk factor for cardiovascular disease (CVD) in patients with chronic kidney disease (CKD). Asymmetric dimethylarginine (ADMA) is a mediator of endothelial dysfunction and is associated with proteinuria in CKD patients. Thus, ADMA can partially account for the increased risk of CVD in CKD patients presenting proteinuria. However, a causal relationship between proteinuria and ADMA remains to be demonstrated.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.