JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effects of TiO2 and Ag Nanoparticles on Polyhydroxybutyrate Biosynthesis By Activated Sludge Bacteria.
Environ. Sci. Technol.
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.
Related JoVE Video
Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs.
Environ. Sci. Technol.
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Surface water methane (CH4) and nitrous oxide (N2O) concentrations were measured and diffusive fluxes were estimated in three subtropical freshwater reservoirs (Little Nerang Dam (LND), Lake Wivenhoe (LW) and Lake Baroon (LB)) in southeast Queensland, Australia, during four seasons in 2011 - 2012. All reservoirs were strong sources of CH4 in all seasons. Surface water CH4 varied between 1,350 and 524,000% saturation, and was overall highest in spring and summer, and lowest in winter, however, with no clear patterns common to all reservoirs. In contrast, all reservoirs switched from weak N2O sinks in spring to strong N2O sources for the rest of the year. N2O saturation in all reservoirs varied between 70 and 1,230%. There were significant differences for CH4 concentrations and fluxes between the reservoirs. Within each reservoir, there was strong spatial CH4 variability but minimal N2O saturation variability. CH4 saturation was higher in inflow zones than in the main body. Area-weighted average fluxes were estimated using six water-air gas transfer velocity estimation models and resulted in fluxes in the range 4.8 - 20.5, 2.3 - 5.4, and 2.3 - 7.5 mg CH4 m(-2) d(-1) while N2O was 0.07 - 0.41, 0.09 - 0.22 and 0.03 - 0.09 mg N2O m(-2) d(-1) for LND, LW and LB, respectively. Total emissions, in carbon dioxide equivalents, from all measurement campaigns were CH4 dominated (67 - 86%). The measured degree of CH4 saturation and fluxes are among the highest reported thus far indicating that subtropical freshwater reservoirs could be significant aquatic greenhouse gas sources. This paper provides a comprehensive assessment of the interplay between biogeochemical processes and the physical forcing driving the water-air gas emissions. The high variability coupled with the lack of consensus amongst estimation models calls for concerted efforts to address uncertainty of measurements for reliable emissions accounting.
Related JoVE Video
Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma.
N. Engl. J. Med.
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Background Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. Methods We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. Results Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. Conclusions These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).
Related JoVE Video
PubAngioGen: a database and knowledge for angiogenesis and related diseases.
Nucleic Acids Res.
PUBLISHED: 11-11-2014
Show Abstract
Hide Abstract
Angiogenesis is the process of generating new blood vessels based on existing ones, which is involved in many diseases including cancers, cardiovascular diseases and diabetes mellitus. Recently, great efforts have been made to explore the mechanisms of angiogenesis in various diseases and many angiogenic factors have been discovered as therapeutic targets in anti- or pro-angiogenic drug development. However, the resulted information is sparsely distributed and no systematical summarization has been made. In order to integrate these related results and facilitate the researches for the community, we conducted manual text-mining from published literature and built a database named as PubAngioGen (http://www.megabionet.org/aspd/). Our online application displays a comprehensive network for exploring the connection between angiogenesis and diseases at multilevels including protein-protein interaction, drug-target, disease-gene and signaling pathways among various cells and animal models recorded through text-mining. To enlarge the scope of the PubAngioGen application, our database also links to other common resources including STRING, DrugBank and OMIM databases, which will facilitate understanding the underlying molecular mechanisms of angiogenesis and drug development in clinical therapy.
Related JoVE Video
Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities.
Environ. Sci. Technol.
PUBLISHED: 11-10-2014
Show Abstract
Hide Abstract
Engineered nanoparticles (ENPs) are entering agricultural soils through land application of nanocontaining biosolids and agrochemicals. The potential adverse effects of ENPs have been studied on food crops and soil bacterial communities separately; however, how ENPs will affect the interacting plant-soil system remains unknown. To address this, we assessed ENP effects on soil microbial communities in soybean-planted, versus unplanted, mesocosms exposed to different doses of nano-CeO2 (0-1.0 g kg(-1)) or nano-ZnO (0-0.5 g kg(-1)). Nano-CeO2 did not affect soil bacterial communities in unplanted soils, but 0.1 g kg(-1) nano-CeO2 altered soil bacterial communities in planted soils, indicating that plants interactively promote nano-CeO2 effects in soil, possibly due to belowground C shifts since plant growth was impacted. Nano-ZnO at 0.5 g kg(-1) significantly altered soil bacterial communities, increasing some (e.g., Rhizobium and Sphingomonas) but decreasing other (e.g., Ensifer, Rhodospirillaceae, Clostridium, and Azotobacter) operational taxonomic units (OTUs). Fewer OTUs decreased from nano-ZnO exposure in planted (41) versus unplanted (85) soils, suggesting that plants ameliorate nano-ZnO effects. Taken together, plants-potentially through their effects on belowground biogeochemistry-could either promote (i.e., for the 0.1 g kg(-1) nano-CeO2 treatment) or limit (i.e., for the 0.5 g kg(-1) nano-ZnO treatment) ENP effects on soil bacterial communities.
Related JoVE Video
Toward Primary Prevention of Asthma: Reviewing the Evidence for Early-Life Respiratory Viral Infections as Modifiable Risk Factors to Prevent Childhood Asthma.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
A first step in primary disease prevention is identifying common, modifiable risk factors that contribute to a significant proportion of disease development. Infant respiratory viral infection and childhood asthma are the two most common acute and chronic diseases of childhood, respectively. Common clinical features and links between these diseases have long been recognized, with early life respiratory syncytial virus (RSV) and rhinovirus (RV) lower respiratory tract infections (LRTI) being strongly associated with increased asthma risk. However, there has long been debate over the role of these respiratory viruses in asthma inception. In this article, we will systematically review the evidence linking early life RSV and RV LRTI with asthma inception and whether they could therefore be targets for primary prevention efforts.
Related JoVE Video
A public health achievement under adversity: the eradication of poliomyelitis from peru, 1991.
Am J Public Health
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
The fight to achieve global eradication of poliomyelitis continues. Although native transmission of poliovirus was halted in the Western Hemisphere by the early 1990s, and only a few cases have been imported in the past few years, much of Latin America's story remains to be told. Peru conducted a successful flexible, or flattened, vertical campaign in 1991. The initial disease-oriented programs began to collaborate with community-oriented primary health care systems, thus strengthening public-private partnerships and enabling the common goal of poliomyelitis eradication to prevail despite rampant terrorism, economic instability, and political turmoil. Committed leaders in Peru's Ministry of Health, the Pan American Health Organization, and Rotary International, as well as dedicated health workers who acted with missionary zeal, facilitated acquisition of adequate technologies, coordinated work at the local level, and increased community engagement, despite sometimes being unable to institutionalize public health improvements.
Related JoVE Video
Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults.
Br. J. Nutr.
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
It has not been established which specific measures of obesity might be most appropriate for predicting CVD risk in Asians. The objectives of the present study were to determine the associations of BMI, waist circumference (WC) and waist:height ratio (WHtR) with CVD risk factors and to evaluate the optimal cut-off values to define overweight or obesity in Chinese adults. Data collected from seven nationwide health examination centres during 2008 and 2009 were analysed. The BMI, WC and WHtR of 244 266 Chinese adults aged ? 20 years included in the study were measured. Logistic regression models were fit to evaluate the OR of each CVD risk factor according to various anthropometric indices. Receiver operating characteristic (ROC) analyses were conducted to assess the optimal cut-off values to predict the risk of diabetes, hypertension, dyslipidaemia and the metabolic syndrome. WHtR had the largest areas under the ROC curve for all CVD risk factors in both sexes, followed by WC and BMI. The optimal cut-off values were approximately 24·0 and 23·0 kg/m2 for BMI, 85·0 and 75·0 cm for WC, and 0·50 and 0·48 for WHtR for men and women, respectively. According to well-established cut-off values, BMI was found to be a more sensitive indicator of hypertension in both men and women, while WC and WHtR were found to be better indicators of diabetes and dyslipidaemia. A combination of BMI and central obesity measures was found to be associated with greater OR of CVD risk factors than either of them alone in both sexes. The present study demonstrated that WHtR and WC may be better indicators of CVD risk factors for Chinese people than BMI.
Related JoVE Video
PEDF Improves Mitochondrial Function in RPE Cells During Oxidative Stress.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 09-13-2014
Show Abstract
Hide Abstract
Oxidative stress plays an important role in health and aging. We have shown that oxidative stress impairs mitochondrial function and promotes RPE cell death in an age-dependent manner. This study investigates the role of pigment epithelium-derived factor (PEDF) in limiting oxidative stress-induced damage to RPE cells through mitochondrial pathways.
Related JoVE Video
Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms.
Appl. Environ. Microbiol.
PUBLISHED: 09-05-2014
Show Abstract
Hide Abstract
Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 ?m) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 ?m, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 ?m. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 ?m and 700 ?m, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates.
Related JoVE Video
A combined transgenic proteomic analysis and regulated trafficking of neuroligin-2.
J. Biol. Chem.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.
Related JoVE Video
The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge.
Water Res.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Dissolved oxygen (DO) is commonly recognized as an important factor influencing nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). However, it has been difficult to separate the true effect of DO from that of nitrite, as DO variation often affects nitrite accumulation. The effect of DO on N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated in this study. Nitrite accumulation was minimised by augmenting nitrite oxidation through the addition of an enriched NOB sludge. It was demonstrated that the specific N2O production rate increased from 0 to 1.9 ± 0.09 (n = 3) mg N2O-N/hr/g VSS with an increase of DO concentration from 0 to 3.0 mg O2/L, whereas N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) decreased from 10.6 ± 1.7% (n = 3) at DO = 0.2 mg O2/L to 2.4 ± 0.1% (n = 3) at DO = 3.0 mg O2/L. The site preference measurements indicated that both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways contributed to N2O production, and DO had an important effect on the relative contributions of the two pathways. This finding is supported by analysis of the process data using an N2O model describing both pathways. As DO increased from 0.2 to 3.0 mg O2/L, the contribution of AOB denitrification decreased from 92% - 95%-66% - 73%, accompanied by a corresponding increase in the contribution by the NH2OH oxidation pathway.
Related JoVE Video
Water engineering. Reducing sewer corrosion through integrated urban water management.
Science
PUBLISHED: 08-16-2014
Show Abstract
Hide Abstract
Sewer systems are among the most critical infrastructure assets for modern urban societies and provide essential human health protection. Sulfide-induced concrete sewer corrosion costs billions of dollars annually and has been identified as a main cause of global sewer deterioration. We performed a 2-year sampling campaign in South East Queensland (Australia), an extensive industry survey across Australia, and a comprehensive model-based scenario analysis of the various sources of sulfide. Aluminum sulfate addition during drinking water production contributes substantially to the sulfate load in sewage and indirectly serves as the primary source of sulfide. This unintended consequence of urban water management structures could be avoided by switching to sulfate-free coagulants, with no or only marginal additional expenses compared with the large potential savings in sewer corrosion costs.
Related JoVE Video
Sleep Apnea and the Risk of Chronic Kidney Disease: A Nationwide Population-Based Cohort Study.
Sleep
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
Sleep apnea (SA) is characterized by apnea during sleep and is associated with cardiovascular diseases and an increase in all-cause mortality. Chronic kidney disease (CKD) is a global health problem that has placed a substantial burden on healthcare resources. However, the relationship between SA and the incidence of CKD is not clear. This study aimed to determine whether SA is an independent risk factor for the development of CKD.
Related JoVE Video
Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.
Environ. Sci. Technol.
PUBLISHED: 07-31-2014
Show Abstract
Hide Abstract
Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.
Related JoVE Video
On-line monitoring of methane in sewer air.
Sci Rep
PUBLISHED: 07-21-2014
Show Abstract
Hide Abstract
Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.
Related JoVE Video
Discovery of Selective Small-Molecule Activators of a Bacterial Glycoside Hydrolase.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 07-10-2014
Show Abstract
Hide Abstract
Fragment-based approaches are used routinely to discover enzyme inhibitors as cellular tools and potential therapeutic agents. There have been few reports, however, of the discovery of small-molecule enzyme activators. Herein, we describe the discovery and characterization of small-molecule activators of a glycoside hydrolase (a bacterial O-GlcNAc hydrolase). A ligand-observed NMR screen of a library of commercially available fragments identified an enzyme activator which yielded an approximate 90?% increase in kcat /KM values (kcat =catalytic rate constant; KM =Michaelis constant). This compound binds to the enzyme in close proximity to the catalytic center. Evolution of the initial hits led to improved compounds that behave as nonessential activators effecting both KM and Vmax values (Vmax =maximum rate of reaction). The compounds appear to stabilize an active "closed" form of the enzyme. Such activators could offer an orthogonal alternative to enzyme inhibitors for perturbation of enzyme activity in vivo, and could also be used for glycoside hydrolase activation in many industrial processes.
Related JoVE Video
The timing of surgical treatment of knee dislocations: a systematic review.
Knee Surg Sports Traumatol Arthrosc
PUBLISHED: 07-04-2014
Show Abstract
Hide Abstract
Traumatic knee dislocations (KDs) are unusual yet limb-threatening injuries; the timing of surgical intervention is still debated. A systematic review was performed to determine the optimal timing of surgery with respect to injury pattern.
Related JoVE Video
Markers for anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) therapy in melanoma.
Methods Mol. Biol.
PUBLISHED: 06-26-2014
Show Abstract
Hide Abstract
Therapeutic strategies that block Cytotoxic T lymphocyte antigen-4 (CTLA-4) enhance antitumor immunity and prolong the lives of patients with metastatic melanoma. However, only a subset of patients benefit, and responses are often delayed due to heterogeneous response kinetics. Ongoing monitoring of the immunologic effects of therapy and correlating these immunologic changes with patient outcomes continue to be important goals to better identify possible mechanisms of clinical activity of these agents. This chapter introduces the major areas of investigation in monitoring patients treated with CTLA-4 blockade and provides specific details of our experience performing selected assays.
Related JoVE Video
The effect of poly-?-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.
Bioresour. Technol.
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Poly-?-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms.
Related JoVE Video
Circulating microRNA-19a as a Potential Novel Biomarker for Diagnosis of Acute Myocardial Infarction.
Int J Mol Sci
PUBLISHED: 06-14-2014
Show Abstract
Hide Abstract
Acute myocardial infarction (AMI) is a serious cardiovascular disease. Investigating new susceptibility genes for effective methods of early diagnosis of AMI is important. In the current study, peripheral blood miR-19a levels were detected by real-time polymerase chain reaction. Significant differences and logistic correlation analyses were carried out by grouping of disease types and stratification of risk factors. Receiver-operator characteristic curve analysis was used to compare the current common clinical biochemical markers and evaluate the sensitivity and specificity of miR-19a for diagnosing AMI. Circulating miR-19a expression in the AMI group was higher than that in controls. The diagnostic effect of circulating miR-19a levels was superior to current clinical biochemical indices, such as CK, CK-MB, MYO, hs-TnI, and BNP. Our results show that there is a close association of circulating miR-19a levels with susceptibility to AMI. Circulating miR-19a levels could be a candidate diagnostic biomarker for AMI.
Related JoVE Video
Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes.
Cancer Immunol Res
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Evaluation of myeloid-derived suppressor cells (MDSC), a cell type implicated in T-cell suppression, may inform immune status. However, a uniform methodology is necessary for prospective testing as a biomarker. We report the use of a computational algorithm-driven analysis of whole blood and cryopreserved samples for monocytic MDSC (m-MDSC) quantity that removes variables related to blood processing and user definitions. Applying these methods to samples from patients with melanoma identifies differing frequency distribution of m-MDSC relative to that in healthy donors. Patients with a pretreatment m-MDSC frequency outside a preliminary definition of healthy donor range (<14.9%) were significantly more likely to achieve prolonged overall survival following treatment with ipilimumab, an antibody that promotes T-cell activation and proliferation. m-MDSC frequencies were inversely correlated with peripheral CD8(+) T-cell expansion following ipilimumab. Algorithm-driven analysis may enable not only development of a novel pretreatment biomarker for ipilimumab therapy, but also prospective validation of peripheral blood m-MDSCs as a biomarker in multiple disease settings.
Related JoVE Video
Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab.
Cancer Immunol Res
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Ipilimumab, an antibody that blocks CTL antigen 4 (CTLA-4), improves overall survival (OS) for patients with metastatic melanoma. Given its role in angiogenesis and immune evasion, serum VEGF levels were evaluated for association with clinical benefit in ipilimumab-treated patients. Sera were collected from 176 patients treated at 3 (n = 98) or 10 mg/kg (n = 68). The VEGF levels before treatment and at induction completion (week 12) were analyzed using the Meso Scale Discovery kit. The association of the levels of VEGF with clinical responses and OS were assessed using the Fisher exact and Kaplan-Meier log-rank tests. VEGF as a continuous variable was associated with OS (P = 0.002). Using 43 pg/mL as the cutoff pretreatment VEGF value defined by maximally selected log-rank statistics, pretreatment VEGF values correlated with clinical benefit at week 24 (P = 0.019; 159 patients evaluable). Pretreatment VEGF ? 43 pg/mL was associated with decreased OS (median OS 6.6 vs. 12.9 months, P = 0.006; 7.4 vs. 14.3 months, P = 0.037 for 3 mg/kg; and 6.2 vs. 10.9 months, P = 0.048 for 10 mg/kg). There was no correlation between VEGF changes and clinical outcome. Serum VEGF may be a predictive biomarker for ipilimumab treatment and is worthy of prospective investigation with various forms of immunologic checkpoint blockade.
Related JoVE Video
Heterotrophic denitrification plays an important role in N?O production from nitritation reactors treating anaerobic sludge digestion liquor.
Water Res.
PUBLISHED: 04-13-2014
Show Abstract
Hide Abstract
Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission.
Related JoVE Video
Cystatin C as a Predictor for Outcomes in Patients with Negligible Renal Function.
Blood Purif.
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
Background: High serum cystatin C (CysC) has been associated with clinical risks independently of the glomerular filtration rate (GFR). This study aims to investigate the predictive power of CysC in patients with a negligible GFR. Methods: Patients on chronic hemodialysis or peritoneal dialysis were enrolled for measurement of CysC levels and were followed up for one year. A daily urine amount <100 ml was considered negligible residual renal function (RRF). Results: CysC results were available in 183 dialysis patients. Of these, 131 patients had a negligible RRF. The multivariate Cox proportional hazards model showed that CysC was an independent predictor of fatal and nonfatal cardiovascular and infection events in all dialysis patients and in dialysis patients with a negligible RRF. Conclusion: CysC maintained its predictive power for adverse outcomes in patients with no meaningful GFR, indicating that the prognostic value of CysC is independent of the GFR. © 2014 S. Karger AG, Basel.
Related JoVE Video
Dose dependent cytotoxicity of pranoprofen in cultured human corneal endothelial cells by inducing apoptosis.
Drug Chem Toxicol
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Abstract Pranoprofen (PPF), a non-steroidal anti-inflammatory drugs (NSAIDs), is often used in keratitis treatment in clinic. Several studies have assessed in vitro the cytotoxicity of topical NSAIDs to corneal epithelial cells due to its importance for predicting human corneal toxicity. Damage by cytotoxic drugs can result in excessive loss of human corneal endothelial (HCE) cells which lead to decompensation of the endothelium and eventual loss of visual acuity. However, the endothelial cytotoxicity of PPF has not yet been reported using an in vitro model of HCE cells. This study assessed the cytotoxicity of PPF to HCE cells and its underlying mechanism. Cellular viability was determined using inverted phase contrast light microscopy, and plasma membrane permeability, genomic DNA fragmentation, and ultrastructure were detected by acridine orange/ethidium bromide staining, DNA agarose gel electrophoresis, and transmission electron microscopy (TEM), respectively. The results on cellular viability showed that PPF at concentrations ranging from 0.0625 to 1.0?g/l had poignant cytotoxicity to HCE cells, and the extent of its cytotoxicity was dose- and time-dependent. Further characterization indicated that PPF induced plasma membrane permeability elevation, DNA fragmentation, and apoptotic body formation, proving its apoptosis inducing effect on HCE cells. In conclusion, PPF above 0.0625?g/l has poignant cytotoxicity on HCE cells in vitro by inducing cell apoptosis, and should be carefully employed in eye clinic.
Related JoVE Video
Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor.
Water Res.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
Full-scale application of partial nitritation and anammox in a single floc-based sequencing batch reactor (SBR) has been achieved for high-rate nitrogen (N) removal, but mechanisms resulting in reliable operation are not well understood. In this work, a mathematical model was calibrated and validated to evaluate operating conditions that lead to out-competition of nitrite oxidizers (NOB) from the SBRs and allow to maintain high anammox activity during long-term operation. The validity of the model was tested using experimental data from two independent previously reported floc-based full-scale SBRs for N-removal via partial nitritation and anammox, with different aeration strategies at aeration phase (continuous vs. intermittent aeration). The model described the SBR cycle profiles and long-term dynamic data from the two SBR plants sufficiently and provided insights into the dynamics of microbial population fractions and N-removal performance. Ammonium oxidation and anammox reaction could occur simultaneously at DO range of 0.15-0.3 mg O2 L(-1) at aeration phase under continuous aeration condition, allowing simplified process control compared to intermittent aeration. The oxygen supply beyond prompt depletion by ammonium oxidizers (AOB) would lead to the growth of NOB competing with anammox for nitrite. NOB could also be washed out of the system and high anammox fractions could be maintained by controlling sludge age higher than 40 days and DO at around 0.2 mg O2 L(-1). Furthermore, the results suggest that N-removal in SBR occurs via both alternating nitritation/anammox and simultaneous nitritation/anammox, supporting an alternative strategy to improve N-removal in this promising treatment process, i.e., different anaerobic phases can be implemented in the SBR-cycle configuration.
Related JoVE Video
Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment.
Water Res.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
Methane production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow degradation and poor substrate availability of WAS. Our previous study revealed that WAS pre-treatment using free nitrous acid (FNA, i.e. HNO2) is an economically feasible and environmentally friendly method for promoting methane production. In order to further improve methane production from WAS, this study presents a novel strategy based on combined FNA and heat pre-treatment. WAS from a full-scale plant was treated for 24 h with FNA alone (0.52-1.43 mg N/L at 25 °C), heat alone (35, 55 and 70 °C), and FNA (0.52-1.11 mg N/L) combined with heat (35, 55 and 70 °C). The pre-treated WAS was then used for biochemical methane potential tests. Compared to the control (no FNA or heat pre-treatment of WAS), biochemical methane potential of the pre-treated WAS was increased by 12-16%, 0-6%, 17-26%, respectively; hydrolysis rate was improved by 15-25%, 10-25%, 20-25%, respectively, for the three types of pre-treatment. Heat pre-treatment at 55 and 70 °C, independent of the presence or absence of FNA, achieved approximately 4.5 log inactivation of pathogens (in comparison to ?1 log inactivation with FNA treatment alone), thus capable of producing Class A biosolids. The combined FNA and heat pre-treatment is an economically and environmentally attractive technology for the pre-treatment of WAS prior to anaerobic digestion, particularly considering that both FNA and heat can be produced as by-products of anaerobic sludge digestion.
Related JoVE Video
Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.
Environ. Sci. Technol.
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.
Related JoVE Video
Shorter daily dwelling time in peritoneal dialysis attenuates the epithelial-to-mesenchymal transition of mesothelial cells.
BMC Nephrol
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Peritoneal dialysis (PD) therapy is known to induce morphological and functional changes in the peritoneal membrane. Long-term exposure to conventional bio-incompatible dialysate and peritonitis is the main etiology of inflammation. Consequently, the peritoneal membrane undergoes structural changes, including angiogenesis, fibrosis, and hyalinizing vasculopathy, which ultimately results in technique failure. The epithelial-to-mesenchymal transition (EMT) of mesothelial cells (MCs) plays an important role during the above process; however, the clinical parameters associated with the EMT process of MCs remain to be explored.
Related JoVE Video
[Vascular access management and education for hemodialysis patients].
Hu Li Za Zhi
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
Appropriate management and care of vascular access are very important to hemodialysis patient care. Access is the cornerstone of hemodialysis therapy. Vascular access with good function and few complications not only promotes hemodialysis therapy success but also facilitates the ability of patients to restore normalcy to life. Proper vascular access maintenance requires good cooperation between medical care personnel and patients. Nurses are responsible to apply their professional knowledge and technology in clinical practice and educate and encourage patients to take care of themselves. Patients are responsible to apply learned self-care knowledge to their daily life. Such cooperation is essential to enhancing the effectiveness of comprehensive care. This article provides an overview of vascular access issues in hemodialysis therapy, including related nursing assessment, management, and proper cannulation procedures. Enhancing patient self-care abilities and working together with patients on proper vascular access care can prolong vascular access site viability.
Related JoVE Video
Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway.
Water Res.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
Nitrogen removal via nitrite (i.e. the nitrite pathway) is bene?cial for carbon-limited biological wastewater treatment plants. This study presents a novel strategy for achieving the nitrite pathway, which involves recirculating a portion of the activated sludge through a side-stream sludge treatment unit, where the sludge is subject to treatment with free nitrous acid (FNA i.e. HNO2). The strategy is proposed based on a novel discovery reported in this work that in the concentration range of 0.24-1.35 mg HNO2(-)-N/L, FNA is substantially more biocidal to nitrite oxidizing bacteria (NOB) than to ammonium oxidizing bacteria (AOB). Two sequencing batch reactors (SBR) treating synthetic domestic wastewater were used to demonstrate the concept, with one serving as an experimental reactor and the other as a control. In the experimental system, 22% of the sludge from the SBR was transferred to the side-stream treatment unit each day, and was subject to FNA treatment at 1.35 mg N/L for 24 h and then returned to the SBR. The nitrite pathway was rapidly (in 15 d) established in the experimental reactor with an average nitrite accumulation ratio (NO2(-)-N/(NO2(-)-N + NO3(-)-N) × 100%) of above 80%. Fluorescence in-situ hybridization demonstrated that the NOB population in the experimental reactor was 80% lower than that in the control reactor, indicating that the majority of NOB were eliminated from the experimental reactor. The FNA-based strategy for establishing the nitrite pathway substantially improved total nitrogen removal, and did not increase N2O emission or deteriorate sludge settleability. The strategy can be easily integrated with a previously demonstrated strategy, which enhances methane production through pre-treatment of secondary activated sludge, to enable maximum energy recovery while achieving improved nitrogen removal.
Related JoVE Video
Impact of oxygen injection on CH4 and N2O emissions from rising main sewers.
J. Environ. Manage.
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Oxygen injection is a commonly used mitigation strategy for sulfide control in sewers. Methane, a potent greenhouse gas, is also produced in sewers. Oxygen injection may reduce methane generation/emission, but could potentially lead to N2O production due to the development of a nitrifying microbial community. The impact of oxygen dosing for sulfide control in sewers on CH4 and N2O production was assessed in this study in laboratory sewer reactors. Results showed that oxygen injection is able to reduce CH4 formation in sewers, although full control of CH4 was not achieved, likely due to partial oxygen penetration into sewer biofilm. The experimental results also revealed a nitrogen loss of around 5 mN/L. However, no significant N2O accumulation was detected.
Related JoVE Video
Risk factors of sensitization to human leukocyte antigen in end-stage renal disease patients.
Hum. Immunol.
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Pre-sensitization to human leukocyte antigen (HLA) is closely related to the prognosis of renal transplantation. Concerning the risk factors for HLA sensitization, most studies focused only on selected transplant candidates.
Related JoVE Video
Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology.
Water Res.
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains.
Related JoVE Video
Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants.
Plant Physiol. Biochem.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
The aim of this study was to determine nutrient elements in soybean (Glycine max) plants cultivated in farm soil amended with nCeO2 at 0-1000 mg kg(-1) and nZnO at 0-500 mg kg(-1). Digested samples were analyzed by ICP-OES/MS. Compared to control, pods from nCeO2 at 1000 mg kg(-1) had significantly less Ca but more P and Cu, while pods from 100 mg kg(-1)nZnO had more Zn, Mn, and Cu. Plants treated with nZnO showed significant correlations among Zn, P, and S in pods with Zn in roots. Correlations among pod Zn/root Zn was r = 0.808 (p ? 0.01) and pod P/root P was r = 0.541 (p ? 0.05). The correlation among pod S/root S was r = -0.65 (p ? 0.01). While nCeO2 treatments exhibited significant correlations between pod Ca/root Ca (r = 0.645, p ? 0.05). The data suggest that nCeO2 and nZnO alter the nutritional value of soybean, which could affect the health of plants, humans, and animals.
Related JoVE Video
Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase.
Acta Crystallogr. D Biol. Crystallogr.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP_05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.
Related JoVE Video
Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor.
Cancer Immunol Res
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
RAF inhibitors selectively block ERK signaling in BRAF-mutant melanomas and have defined a genotype-guided approach to care for this disease. RAF inhibitors have the opposite effect in BRAF wild-type tumor cells, where they cause hyperactivation of ERK signaling. Here, we predict that RAF inhibitors can enhance T cell activation, based upon the observation that these agents paradoxically activate ERK signaling in BRAF wild-type cells. To test this hypothesis, we have evaluated the effects of the RAF inhibitor BMS908662 on T cell activation and signaling in vitro and in vivo. We observe that T cell activation is enhanced in a concentration-dependent manner and that this effect corresponds with increased ERK signaling, consistent with paradoxical activation of the pathway. Furthermore, we find that the combination of BMS908662 with CTLA-4 blockade in vivo potentiates T cell expansion, corresponding with hyperactivation of ERK signaling in T cells detectable ex vivo. Lastly, this combination demonstrates superior anti-tumor activity, compared to either agent alone, in two transplantable tumor models. This study provides clear evidence that RAF inhibitors can modulate T cell function by potentiating T cell activation in vitro and in vivo. Paradoxical activation of ERK signaling in T cells offers one mechanism to explain the enhanced antitumor activity seen when RAF inhibitors are combined with CTLA-4 blockade in preclinical models.
Related JoVE Video
Haemolytic uremic syndrome following fire ant bites.
BMC Nephrol
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Haemolytic-uremic syndrome (HUS) is a severe, life-threatening disease with symptoms such as haemolytic anaemia, renal failure, and a low platelet count. Possible aetiology includes bacterial infections, medication, post-hematopoietic cell transplantation, pregnancy, autoimmune disease, and acquired immunodeficiency syndrome.
Related JoVE Video
A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release.
Front Hum Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)-most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy.
Related JoVE Video
Analysis of run-to-run variation of bar-coded pyrosequencing for evaluating bacterial community shifts and individual taxa dynamics.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Bar-coded pyrosequencing has been increasingly used due to its fine taxonomic resolution and high throughput. Yet, concerns arise regarding the reproducibility of bar-coded pyrosequencing. We evaluated the run-to-run variation of bar-coded pyrosequencing in detecting bacterial community shifts and taxa dynamics. Our results demonstrate that pyrosequencing is reproducible in evaluating community shifts within a run, but not between runs. Also, the reproducibility of pyrosequencing in detecting individual taxa increased as a function of taxa abundance. Based on our findings: (1) for studies with modest sequencing depth, it is doubtful that data from different pyrosequencing runs can be considered comparable; (2) if multiple pyrosequencing runs are needed to increase the sequencing depth, additional sequencing efforts should be applied to all samples, rather than to selected samples; (3) if pyrosequencing is used for estimating bacterial population dynamics, only the abundant taxa should be considered; (4) for less-abundant taxa, the sequencing depth should be increased to ensure an accurate evaluation of taxon variation trends across samples.
Related JoVE Video
Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known.
Related JoVE Video
Cytotoxic effects of betaxolol on healthy corneal endothelial cells both in vitro and in vivo.
Int J Ophthalmol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
To demonstrate the cytotoxic effect of betaxolol and its underlying mechanism on human corneal endothelial cells (HCE cells) in vitro and cat corneal endothelial cells (CCE cells) in vivo, providing experimental basis for safety anti-glaucoma drug usage in clinic of ophthalmology.
Related JoVE Video
Controlling chemical dosing for sulfide mitigation in sewer networks using a hybrid automata control strategy.
Water Sci. Technol.
PUBLISHED: 12-21-2013
Show Abstract
Hide Abstract
Chemicals such as magnesium hydroxide (Mg(OH)2) and iron salts are widely used to control sulfide-induced corrosion in sewer networks composed of interconnected sewer pipe lines and pumping stations. Chemical dosing control is usually non-automatic and based on experience, thus often resulting in sewage reaching the discharge point receiving inadequate or even no chemical dosing. Moreover, intermittent operation of pumping stations makes traditional control theory inadequate. A hybrid automata-based (HA-based) control method is proposed in this paper to coordinate sewage pumping station operations by considering their states, thereby ensuring suitable chemical concentrations in the network discharge. The performance of the proposed control method was validated through a simulation study of a real sewer network using real sewage flow data. The physical, chemical and biological processes were simulated using the well-established SeweX model. The results suggested that the HA-based control strategy significantly improved chemical dosing control performance and sulfide mitigation in sewer networks, compared to the current common practice.
Related JoVE Video
Potential Mechanisms and Environmental Controls of TiO2 Nanoparticle Effects on Soil Bacterial Communities.
Environ. Sci. Technol.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water.
Related JoVE Video
Risk of Stroke in Long-term Dialysis Patients Compared With the General Population.
Am. J. Kidney Dis.
PUBLISHED: 10-16-2013
Show Abstract
Hide Abstract
Patients undergoing maintenance dialysis are at increased risk of stroke.
Related JoVE Video
Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge.
Environ. Sci. Technol.
PUBLISHED: 09-27-2013
Show Abstract
Hide Abstract
Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.
Related JoVE Video
Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor.
Environ. Sci. Technol.
PUBLISHED: 09-26-2013
Show Abstract
Hide Abstract
This work demonstrates, for the first time, the feasibility of nitrogen removal by using the synergy of anammox and denitrifying anaerobic methane oxidation (DAMO) microorganisms in a membrane biofilm reactor (MBfR). The reactor was fed with synthetic wastewater containing nitrate and ammonium. Methane was delivered from the interior of hollow fibres in the MBfR to the biofilm that grew on the fibers outer wall. After 24 months of operation, the system achieved a nitrate and an ammonium removal rate of about 190 mgN L(-1) d(-1) (or 86 mgN m(-2) d(-1), with m(2) referring to biofilm surface area) and 60 mgN L(-1) d(-1) (27 mgN m(-2) d(-1)), respectively. No nitrite accumulation was observed. Fluorescence in situ hybridization (FISH) analysis indicated that DAMO bacteria (20-30%), DAMO archaea (20-30%) and anammox bacteria (20-30%) jointly dominated the microbial community. Based on the known metabolism of these microorganisms, mass balance, and isotope studies, we hypothesize that DAMO archaea converted nitrate, both externally fed and produced by anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly removed the nitrite produced, with ammonium and methane as the electron donor, respectively. The process could potentially be used for anaerobic nitrogen removal from wastewater streams containing ammonium and nitrate/nitrite.
Related JoVE Video
Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification.
Environ. Sci. Technol.
PUBLISHED: 09-19-2013
Show Abstract
Hide Abstract
Competition for electrons among different steps of denitrification has previously been shown to occur, and to play an important role in the accumulation and emission of N2O in wastewater treatment. However, this electron competition is not recognized in the current denitrification models, limiting their ability to predict N2O accumulation during denitrification. In this work, a new denitrification model is developed for wastewater treatment processes. It describes electron competition among the four steps of denitrification, through modeling the carbon oxidation and nitrogen reduction processes separately, in contrast to the existing models that directly couple these two types of processes. Electron carriers are introduced to link carbon oxidation, which donates electrons to carriers, and nitrogen oxides reduction, which receives electrons from these carriers. The relative ability of each denitrification step to compete for electrons is modeled through the use of different affinity constants with reduced carriers. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the nitrate, nitrite, and N2O reduction rates of a methanol-utilizing denitrifying culture under various carbon and nitrogen oxides supplying conditions. The model proposed, while subject to further validation, is expected to enhance our ability to predict N2O accumulation in denitrification.
Related JoVE Video
Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia).
Sci. Total Environ.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
Methane (CH4) and nitrous oxide (N2O) are two key greenhouse gases. Their global atmospheric budgeting is, however, flout with challenges partly due to lack of adequate field studies determining the source strengths. Knowledge and data limitations exist for subtropical and tropical regions especially in the southern latitudes. Surface water methane and nitrous oxide concentrations were measured in a subtropical estuarine system in the southern latitudes in an extensive field study from 2010 to 2012 and water-air fluxes estimated using models considering the effects of both wind and flow induced turbulence. The estuary was found to be a strong net source of both CH4 and N2O all-year-round. Dissolved N2O concentrations ranged between 9.1±0.4 to 45.3±1.3nM or 135 to 435% of atmospheric saturation level, while CH4 concentrations varied between 31.1±3.7 to 578.4±58.8nM or 1210 to 26,430% of atmospheric saturation level. These results compare well with measurements from tropical estuarine systems. There was strong spatial variability with both CH4 and N2O concentrations increasing upstream the estuary. Strong temporal variability was also observed but there were no clear seasonal patterns. The degree of N2O saturation significantly increased with NOx concentrations (r(2)=0.55). The estimated water-air fluxes varied between 0.1 and 3.4mgN2Om(-2)d(-1) and 0.3 to 27.9mgCH4m(-2)d(-1). Total emissions (CO2-e) were N2O (64%) dominated, highlighting the need for reduced nitrogen inputs into the estuary. Choice of the model(s) for estimation of the gas transfer velocity had a big bearing on the estimated total emissions.
Related JoVE Video
Depression, cytokines, and pancreatic cancer.
Psychooncology
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
The aim of this study was to examine the relationships between cytokines, depression, and pancreatic cancer.
Related JoVE Video
The role of iron in sulfide induced corrosion of sewer concrete.
Water Res.
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
The sulfide-induced corrosion of concrete sewer is a widespread and expensive problem for water utilities worldwide. Fundamental knowledge of the initiation and propagation of sewer corrosion, especially the interactions between chemical reactions and physical structure changes, is still largely unknown. Advanced mineral analytical techniques were applied to identify the distribution of corrosion products and the micro-cracking that developed along the corrosion boundary. It was found that sewer concrete corrosion caused by reactions with sulfuric acid progressed uniformly in the cement of concrete. In contrast to conventional knowledge, iron rust rather than gypsum and ettringite was likely the factor responsible for cracking ahead of the corrosion front. The analysis also allowed quantitative determination of the major corrosion products, i.e., gypsum and ettringite, with the latter found closer to the corrosion front. The conceptual model based on these findings clearly demonstrated the complex interactions among different chemical reactions, diffusion, and micro-structure changes.
Related JoVE Video
Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm.
Water Res.
PUBLISHED: 07-24-2013
Show Abstract
Hide Abstract
Wastewater pH affects the transfer of H2S from liquid to gas and hence impacts on the extent of odour and corrosion. Sewage pH may change significantly in sewer networks due to, for example, the fermentation of organic compounds, particularly when the hydraulic retention time is long, the discharge of trade wastes that are organic-rich or with extreme pH, and the intentional addition of alkali to raise the sewage pH. Such a variation of pH is expected to affect sulfate reduction by sewer biofilms. In this work, experimental studies were carried out to reveal the detailed effects of pH on sulfidogenesis by anaerobic sewer biofilms developed in a laboratory sewer reactor fed with real sewage, and the potential causes for the inhibitory effects observed under both high and low pH conditions. The data clearly showed that the sewer biofilm had the highest sulfate reduction rate at around neutral pH (6.5-7.5), and the activity decreased when pH was higher or lower. The data also suggested that the inhibiting effect at a higher pH is likely due to the inhibitory effects of free ammonia, while at a lower pH it is more likely due to the pH itself. An inhibition model formulated based on the above hypotheses was able to adequately describe the measured sulfide production rates under different pH levels and different free ammonia concentrations, as well as data previously reported in literature. The calibrated model was used to simulate sulfide production in a sewer network receiving alkali dosage. The model adequately predicted sulfide production in the network, which could not be achieved with a model not considering the pH effect.
Related JoVE Video
A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators.
Water Res.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
The quantification of nitrous oxide (N2O) emissions from open-surface wastewater treatment systems with surface aerators is difficult as emissions from the surface aerator zone cannot be easily captured by floating hoods. In this study, we propose and demonstrate a novel methodology to estimate N2O emissions from such systems through determination of the N2O transfer coefficient (kLa) induced by surface aerators based on oxygen balance for the entire system. The methodology is demonstrated through its application to a full-scale open oxidation ditch wastewater treatment plant with surface aerators. The estimated kLa profile based on a month-long measurement campaign for oxygen balance, intensive monitoring of dissolved N2O profiles along the oxidation ditch over a period of four days, together with mathematical modelling, enabled to determine the N2O emission factor from this treatment plant (0.52 ± 0.16%). Majority of the N2O emission was found to occur in the surface aerator zone, which would be missed if the gas hood method was applied alone.
Related JoVE Video
Effect of H2S on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers.
Environ. Sci. Technol.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
Sulfide is produced in sewer networks, and previous studies suggest that sulfide in sewage could alter the activity of heterotrophic denitrification and lead to N2O accumulation during biological wastewater treatment. However, the details of this phenomenon are poorly understood. In this study, the potential inhibitory effects of sulfide on nitrate, nitrite, and N2O reduction were assessed with a methanol-utilizing denitrifying culture both prior to and after its exposure and adaptation to sulfide. Hydrogen sulfide was found to be strongly inhibitory to N2O reduction, with 50% inhibition observed at H2S concentrations of 0.04 mg H2S-S/L and 0.1 mg H2S-S/L for the unadapted and adapted cultures, respectively. In comparison, both nitrate and nitrite reduction was more tolerant to H2S. A 50% inhibition of nitrite reduction was observed at approximately 2.0 mg H2S-S/L for both unadapted and adapted cultures, while no inhibition of nitrate reduction occurred at the highest H2S concentrations applied (2.0 mg H2S-S/L) to either culture. N2O accumulation was observed during nitrate and nitrite reduction by the adapted culture when H2S concentrations were above 0.5 and 0.2 mg H2S-S/L, respectively. Additionally, we reveal that hydrogen sulfide (H2S), rather than sulfide, was likely the true inhibitor of N2O reduction, and the inhibitory effect was reversible. These findings suggest that sulfide management in sewers could potentially have a significant impact on N2O emission from wastewater treatment plants.
Related JoVE Video
Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems.
Water Res.
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Caustic dosing to raise pH above 10.0 for short periods (hours) is often used by water utilities for controlling sulfide formation in sewers. However the effectiveness of this strategy is rarely reported and the impact of pH level and exposure time on the effectiveness is largely unknown. The effectiveness of this strategy under various pH levels (10.5-12.5) and exposure time (0.5-6.0 h) in controlling sulfide and methane production was evaluated in laboratory scale anaerobic sewer reactors and then in a real sewer system. Laboratory studies showed that the sulfide production rate of the laboratory sewer biofilm was reduced by 70-90% upon the completion of the pH shock, while the methane production rate decreased by 95-100%. It took approximately one week for the sulfate-reducing activity to recover to normal levels. In comparison, the methanogenic activities recovered to only about 10% in 4 weeks. The slow recovery is explained by the substantially loss of cell viability upon pH shocks, which recovered slowly after the shocks. Laboratory studies further revealed that a pH level of 10.5 for 1-2 h represent cost-effective conditions for the pH shock treatment. However, field trials showed a higher pH (11.5) and larger dosing times are needed due to the pH decreases along the sewer line and at the two ends of the caustic-receiving wastewater slugs due to dilution. To have effective sulfide and methane control, it is important to ensure effective conditions (pH > 10.5 and duration >1-2 h) for the entire sewer line.
Related JoVE Video
Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants.
Environ. Sci. Technol.
PUBLISHED: 06-27-2013
Show Abstract
Hide Abstract
Mathematical modeling of N2O emissions is of great importance toward understanding the whole environmental impact of wastewater treatment systems. However, information on modeling of N2O emissions from full-scale wastewater treatment plants (WWTP) is still sparse. In this work, a mathematical model based on currently known or hypothesized metabolic pathways for N2O productions by heterotrophic denitrifiers and ammonia-oxidizing bacteria (AOB) is developed and calibrated to describe the N2O emissions from full-scale WWTPs. The model described well the dynamic ammonium, nitrite, nitrate, dissolved oxygen (DO) and N2O data collected from both an open oxidation ditch (OD) system with surface aerators and a sequencing batch reactor (SBR) system with bubbling aeration. The obtained kinetic parameters for N2O production are found to be reasonable as the 95% confidence regions of the estimates are all small with mean values approximately at the center. The model is further validated with independent data sets collected from the same two WWTPs. This is the first time that mathematical modeling of N2O emissions is conducted successfully for full-scale WWTPs. While clearly showing that the NH2OH related pathways could well explain N2O production and emission in the two full-scale plants studied, the modeling results do not prove the dominance of the NH2OH pathways in these plants, nor rule out the possibility of AOB denitrification being a potentially dominating pathway in other WWTPs that are designed or operated differently.
Related JoVE Video
An efficient method for measuring dissolved VOSCs in wastewater using GC-SCD with static headspace technique.
Water Res.
PUBLISHED: 06-23-2013
Show Abstract
Hide Abstract
Volatile organic sulfur compounds (VOSCs) are important sources of unpleasant odor in wastewater systems. However, the study of VOSCs is usually hindered by their complicated measurement method and highly reactive nature. In this work, a static headspace method utilising gas chromatography (GC) with a sulfur chemiluminescence detector (SCD) was developed to quantitatively analyze VOSCs in wastewater matrices. The method has low detection limits and requires no pre-concentration treatment. Three typical VOSCs, namely methanethiol (MT), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), were chosen as examples for this study. The calibration curves of all three compounds covering a wide range from 0.5 ppb to 500 ppb showed good linearity (R(2) > 0.999). The method detection limits (MDL) were 0.08, 0.12 and 0.21 ppb for MT, DMS and DMDS, respectively. The reproducibility (relative standard deviation) was approximately 2%. The recovery ratio of MT, DMS and DMDS in spiked wastewater samples were 83 ± 4%, 103 ± 4% and 102 ± 3%, respectively. Sample preservation tests showed that VOSCs in wastewater samples could be preserved in vials without headspace under acidified conditions (pH ?1.1) for at least 24 h without significant changes (<1.8 ppb). The analysis of real wastewater samples from both a laboratory-scale sewer system and a full-scale sewer pipe demonstrated the suitability of this method for routine wastewater VOSC measurement.
Related JoVE Video
The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture.
Environ. Sci. Technol.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
The effect of nitrite (NO2(-)) on the nitrous oxide (N2O) production rate of an enriched ammonia-oxidizing bacteria (AOB) culture was characterized over a concentration range of 0-1000 mg N/L. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The N2O production rate was highest at NO2(-) concentrations of less than 50 mg N/L. At dissolved oxygen (DO) concentration of 0.55 mg O2/L, further increases in NO2(-) concentration from 50 to 500 mg N/L resulted in a gradual decrease in N2O production rate, which maintained at its lowest level of 0.20 mg N2O-N/h/g VSS in the NO2(-) concentration range of 500-1000 mg N/L. The observed NO2(-)-induced decrease in N2O production was even more apparent at increased DO concentration. At DO concentrations of 1.30 and 2.30 mg O2/L, the lowest N2O production rate (0.25 mg N2O-N/h/g VSS) was attained at a lower NO2(-) concentration of 200-250 mg N/L. These observations suggest that N2O production by the culture is diminished by both high NO2(-) and high DO concentrations. Collectively, the findings show that exceedingly high NO2(-) concentrations in nitritation systems could lead to decreased N2O production. Further studies are required to determine the extent to which the same response to NO2(-) is observed across different AOB cultures.
Related JoVE Video
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
Nature
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron, manganese and sulphate reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus Methylomirabilis oxyfera can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of M. oxyfera and a novel ANME lineage, ANME-2d. However, as M. oxyfera can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and (13)C- and (15)N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting M. oxyfera in the system. We propose the name Candidatus Methanoperedens nitroreducens for the ANME-2d population and the family Candidatus Methanoperedenaceae for the ANME-2d lineage. We predict that M. nitroreducens and other members of the Methanoperedenaceae have an important role in linking the global carbon and nitrogen cycles in anoxic environments.
Related JoVE Video
Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater.
Water Res.
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.
Related JoVE Video
Breakage and growth towards a stable aerobic granule size during the treatment of wastewater.
Water Res.
PUBLISHED: 05-25-2013
Show Abstract
Hide Abstract
To better understand granule growth and breakage processes in aerobic granular sludge systems, the particle size of aerobic granules was tracked over 50 days of wastewater treatment within four sequencing batch reactors fed with abattoir wastewater. These experiments tested a novel hypothesis stating that granules equilibrate to a certain stable granule size (the critical size) which is determined by the influence of process conditions on the relative rates of granule growth and granule breakage or attrition. For granules that are larger than the critical size, granule breakage and attrition outweighs granule growth, and causes an overall reduction in granule size. For granules at the critical size, the overall growth and size reduction processes are balanced, and granule size is stable. For granules that are smaller than the critical size, granule growth outweighs granule breakage and attrition, and causes an overall increase in granule size. The experimental reactors were seeded with mature granules that were either small, medium, or large sized, these having respective median granule sizes of 425 ?m, 900 ?m and 1125 ?m. An additional reactor was seeded with a mixture of the sized granules to represent the original source of the granular sludge. The experimental results were analysed together with results of a previous granule formation study that used mixed seeding of granules and floccular sludge. The analysis supported the critical size hypothesis and showed that granules in the reactors did equilibrate towards a common critical size of around 600-800 ?m. Accordingly, it is expected that aerobic granular reactors at steady-state operation are likely to have granule size distributions around a characteristic critical size. Additionally, the results support that maintaining a quantity of granules above a particular size is important for granule formation during start-up and for process stability of aerobic granule systems. Hence, biomass washout needs to be carefully managed to optimize granule formation during the reactor start-up.
Related JoVE Video
Effects of targeted interventions on lifestyle modifications of chronic kidney disease patients: randomized controlled trial.
West J Nurs Res
PUBLISHED: 04-25-2013
Show Abstract
Hide Abstract
Targeting interventions to an individuals readiness to modify lifestyle factors, specifically diet and exercise behaviors, may delay chronic kidney disease (CKD) progression. This study examined the effects of a targeted Lifestyle Modification Program based on the readiness to change health-promotion lifestyle behaviors, renal protection knowledge, and physical indicators of patients with early CKD. A repeated-measures design randomized 160 CKD patients from four southern Taiwan outpatient nephrology clinics into control and intervention groups. Data were collected five times over a year with a participant retention rate of 64.4%. The intervention group demonstrated significant improvement with regard to diet behavior modifications. Compared with the control group, the intervention group showed a significant improving trend of renal function protection knowledge, stress management, and interpersonal relations. Targeted interventions for patients in the early phases of CKD promotes adherence to proper diet, exercise behavior, and positive lifestyle modifications.
Related JoVE Video
Inactivation kinetics of anaerobic wastewater biofilms by free nitrous acid.
Appl. Microbiol. Biotechnol.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Recent studies have shown that free nitrous acid (FNA) is biocidal to a broad range of microorganisms. Microorganisms residing in anaerobic sewer biofilms were found to be inactivated after a short (6-24 h) exposure to FNA. In this study, we investigate the inactivation kinetics of anaerobic sewer biofilms grown in real wastewater. Microbial viability of biofilms was determined using LIVE/DEAD staining. A two-fraction kinetic model was developed to simulate the inactivation of mixed culture in biofilms. The kinetic parameters were estimated by using Bayesian statistics. Model simulation found that a fraction (85 %) of the biofilm community was highly sensitive to FNA with a high inactivation rate, and a fraction (15 %) was tolerant to FNA and persisted after FNA treatment. This different susceptibility to FNA treatment was likely due to the diverse microbial community and biofilm protection. The fact that nearly 85 % microbes were inactivated confirmed that FNA is a strong biocide to mixed-culture biofilms. It was found that the inactivation rate constant was not affected by pH levels. The kinetic model was successfully used to optimize FNA dosage for sulfide control in sewer biofilms. Also, results suggest that a high FNA concentration is preferred than long exposure time to reduce the total chemical consumption.
Related JoVE Video
A Labile Pool of IQGAP1 Disassembles Endothelial Adherens Junctions.
Int J Mol Sci
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Adhesion molecules are known to play an important role in endothelial activation and angiogenesis. Here we determined the functional role of IQGAP1 in the regulation of endothelial adherens junctions. VE-cadherin is found to be associated with actin filaments and thus stable, but IQGAP1 at intercellular junctions is not bound to actin filaments and thus labile. Expression of GFP labeled VE-?-catenin is shown to increase the electrical resistance across HUVEC monolayers and diminishes endogenous labile IQGAP1 at the intercellular junctions. Knockdown of endogenous IQGAP1 enhances intercellular adhesion in HUVECs by increasing the association of VE-cadherin with P120 and ?-catenin. IQGAP1 knockdown also decreases the interaction of N-cadherin with P120 and ?-catenin. Together, these results suggest that a labile pool of IQGAP1 at intercellular junctions disassembles adherens junctions and thus impairs endothelial cell-cell adhesion.
Related JoVE Video
pH dynamics in sewers and its modeling.
Water Res.
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
pH variation in sewers has a significant effect on hydrogen sulfide production and emissions, and hence its accurate prediction is critical for the optimization of mitigation strategies. In this study, the nature and dynamics of pH variation in a sewer system is examined. Three sewer systems collecting domestic wastewater were monitored, with pH in all cases showing large diurnal variations. pH in fresh sewage in all three cases had a very similar trend with maximum pH in the range of 8.5-8.7. pH variation in fresh sewage followed the same pattern as the sewage flow rate, suggesting that sewage pH is influenced by household water use. Nitrogen content of the wastewater was found to be the most influential factor causing pH variation in fresh sewage, with the total ammonium concentration variation well correlated with the pH variation. A methodology for predicting pH variation in sewers is developed and calibration protocols proposed. The methodology, which is based on the concept of charge balance, was validated using titration curves and field pH data. Measurement of the total ammonium concentration in fresh sewage was found necessary and adequate for the calibration of the charge balance-based pH model.
Related JoVE Video
Hydrolysis, acidification and dewaterability of waste activated sludge under alkaline conditions: combined effects of NaOH and Ca(OH)2.
Bioresour. Technol.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Hydrolysis, acidification and dewaterability of waste activated sludge (WAS) were investigated at pH 10 controlled by the addition of NaOH, Ca(OH)2 or their mixtures at various ratios. Similar efficiency of WAS solublisation was observed in all cases, at 38-40%. High volatile fatty acid (VFA) production and good sludge dewaterability could not be achieved simultaneously by adding NaOH or Ca(OH)2 alone, but could be achieved by adding mixtures of NaOH and Ca(OH)2. VFA production in the case with the addition of Ca(OH)2 only (1201 mg(COD)/L) was lower than in the cases with the addition of NaOH or its mixtures with Ca(OH)2 (1813-1868 mg(COD)/L), and the lower VFA production with Ca(OH)2 addition alone could be related to the fact that a higher concentration of Ca(2+) was released into the fermentation liquid, which likely inhibited the hydrolysis process of protein. Furthermore, adding mixtures of NaOH and Ca(OH)2 was more economical for VFA production.
Related JoVE Video
In-situ caustic generation from sewage: the impact of caustic strength and sewage composition.
Water Res.
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
Periodic caustic dosage is a commonly used method by the water industry to elevate pH levels and deactivate sewer biofilms responsible for hydrogen sulfide generation. Caustic (NaOH) can be generated in-situ from sewage using a divided electrochemical cell, which avoids the need for transport, handling and storage of concentrated caustic solutions. In this study, we investigated the impact of caustic strength in the cathode compartment and the impact of sodium concentration in sewage on the Coulombic efficiency (CE) for caustic generation. The CE was found to be independent of the caustic strength produced in the range of up to ~3 wt%. Results showed that a caustic solution of ~3 wt% could be produced directly from sewage at a CE of up to 75 ± 0.5%. The sodium concentration in sewage had a significant impact on the CE for caustic generation as well as on the energy requirements of the system, with a higher sodium concentration leading to a higher CE and lower energy consumption. The proton, calcium, magnesium and ammonium concentrations in sewage affected the CE for caustic generation, especially at low sodium concentrations. Economical assessment based on the experimental results indicated that sulfide control in sewers using electrochemically-generated caustic from sewage is an economically attractive strategy.
Related JoVE Video
Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment.
Water Res.
PUBLISHED: 02-24-2013
Show Abstract
Hide Abstract
Limited availability of carbon sources has been regarded as an important factor leading to N2O accumulation during denitrification in wastewater treatment. By varying the carbon (methanol) loading rate to a methanol utilizing denitrifying culture in the presence of various electron acceptors (nitrate, nitrite, N2O and their combinations), this study quantitatively investigated the electron distribution among different nitrogen oxide reductases during denitrification. The results showed that electron competition occurs under not only carbon limiting but also carbon abundant conditions. The electron distribution among the nitrogen oxide reductases is affected by the carbon loading rate, with a lower fraction of electrons distributed to the N2O reductase with reduced carbon loading rate. N2O accumulation occurs when the electron flux going to nitrite reduction is higher than that going to N2O reduction. The study also showed that, for the culture investigated, the carbon to nitrogen ratio is not a key factor leading to N2O accumulation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.