JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in forest soils from urban to rural areas in the Pearl River Delta ofSouthern China.
Int J Environ Res Public Health
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
The upper layer of forest soils (0-20 cm depth) were collected from urban, suburban, and rural areas in the Pearl River Delta of Southern China to estimate the distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs). Total concentrations of PAHs in the forest soils decreased significantly along the urban-suburban-rural gradient, indicating the influence of anthropogenic emissions on the PAH distribution in forest soils. High and low molecular weight PAHs dominated in the urban and rural forest soils, respectively, implying the difference in emission sources between the areas. The values of PAH isomeric diagnostic ratios indicated that forest soil PAHs were mainly originated from traffic emissions, mixed sources and coal/wood combustion in the urban, suburban and rural areas, respectively. Principal component analysis revealed that traffic emissions, coal burning and residential biomass combustion were the three primary contributors to forest soil PAHs in the Pearl River Delta. Long range transportation of PAHs via atmosphere from urban area might also impact the PAHs distribution in the forest soils of rural area.
Related JoVE Video
Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources.
J Environ Sci (China)
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
Emissions from industrial activities pose a serious threat to human health and impose the need for monitoring both inorganic and organic pollutants in industrial areas. We selected Masson pine (Pinus massoniana L.) as potential biomonitor and collected the current (C) and previous year (C+1) needles from three industrial sites dominated by petrochemical, ceramics manufacturing, and iron and steel smelting plants and one remote site to determine heavy metals (Cu, Cd, Pb, Zn, Cr, Ni and Co) and polycyclic aromatic hydrocarbons (PAHs) in unwashed and water-washed needles. Both unwashed and washed C+1 needles showed generally higher concentrations of heavy metals and PAHs than C needles, although the washed needles more clearly spotlighted the accumulation effect of PAHs over exposure time. Water-washing resulted in a significant decrease in needle PAH concentrations with more significant effects shown in C needles. By contrast, needle heavy metal concentrations were much less affected by washing. Although heavy metals and PAHs might differ in adsorption and uptake strategies, their higher concentrations in the needles at the industrial sites indicated conspicuous contamination due to industrial emissions there. The PAH distribution patterns in pine needles accorded with the real types of energy consumption in the study sites and were efficiently used for pinpointing local pollutant sources.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.