JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The N-Terminal Cleavable Pre-Sequence Encoded in the First Exon of Cystathionine ?-Synthase Contains Two Different Functional Domains for Chloroplast Targeting and Regulation of Gene Expression.
Plant Cell Physiol.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Chloroplast transit peptide sequences (cTPs) located in the N-terminal region of nuclear-encoded chloroplast proteins are essential for their sorting, and are generally cleaved from the proteins after their import into the chloroplasts. The Arabidopsis thaliana cystathionine ?-synthase (CGS), the first committed enzyme of methionine biosynthesis, is a nuclear-encoded chloroplast protein. Arabidopsis CGS possesses an N-terminal extension region that is dispensable for enzymatic activity. This N-terminal extension contains the cTP and several functional domains including an MTO1 region, the cis-element for post-transcriptional feedback regulation of CGS1 that codes for CGS. A previous report suggested that the cTP cleavage site of CGS is located upstream of the MTO1 region. However, the region required for protein sorting has not been analyzed. In this study, we carried out functional analyses to elucidate the region required for chloroplast targeting by using a chimeric protein, Ex1:GFP, in which the CGS1 exon 1 coding region containing the N-terminal extension was tagged with green fluorescent protein. The sequence upstream of the MTO1 region was responsible for efficient chloroplast targeting and for avoidance of missorting to the mitochondria. Our data also showed that the major N-terminus of Ex1:GFP is Ala91, which is located immediately downstream of the MTO1 region, and the MTO1 region is not retained in the mature Ex1:GFP accumulated in the chloroplast. These findings suggest that the N-terminal cleavable pre-sequence harbors dual functions in protein sorting and in regulating gene expression. Our study highlights the unique properties of Arabidopsis CGS cTP among chloroplast-targeted proteins.
Related JoVE Video
Ribosomes in a stacked array: elucidation of the step in translation elongation at which they are stalled during S-adenosyl-L-methionine-induced translation arrest of CGS1 mRNA.
J. Biol. Chem.
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state.
Related JoVE Video
SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.
Plant Cell Physiol.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.
Related JoVE Video
S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene.
J. Biol. Chem.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Expression of the Arabidopsis CGS1 gene, encoding the first committed enzyme of methionine biosynthesis, is feedback-regulated in response to S-adenosyl-L-methionine (AdoMet) at the mRNA level. This regulation is first preceded by temporal arrest of CGS1 translation elongation at the Ser-94 codon. AdoMet is specifically required for this translation arrest, although the mechanism by which AdoMet acts with the CGS1 nascent peptide remained elusive. We report here that the nascent peptide of CGS1 is induced to form a compact conformation within the exit tunnel of the arrested ribosome in an AdoMet-dependent manner. Cysteine residues introduced into CGS1 nascent peptide showed reduced ability to react with polyethyleneglycol maleimide in the presence of AdoMet, consistent with a shift into the ribosomal exit tunnel. Methylation protection and UV cross-link assays of 28 S rRNA revealed that induced compaction of nascent peptide is associated with specific changes in methylation protection and UV cross-link patterns in the exit tunnel wall. A 14-residue stretch of amino acid sequence, termed the MTO1 region, has been shown to act in cis for CGS1 translation arrest and mRNA degradation. This regulation is lost in the presence of mto1 mutations, which cause single amino acid alterations within MTO1. In this study, both the induced peptide compaction and exit tunnel change were found to be disrupted by mto1 mutations. These results suggest that the MTO1 region participates in the AdoMet-induced arrest of CGS1 translation by mediating changes of the nascent peptide and the exit tunnel wall.
Related JoVE Video
Intracerebroventricular administration of C-type natriuretic peptide suppresses food intake via activation of the melanocortin system in mice.
Diabetes
Show Abstract
Hide Abstract
C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with ?-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system.
Related JoVE Video
Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages.
J. Appl. Physiol.
Show Abstract
Hide Abstract
Skeletal muscle is one of the most sensitive tissues to mechanical loading, and unloading inhibits the regeneration potential of skeletal muscle after injury. This study was designed to elucidate the specific effects of unloading stress on the function of immunocytes during muscle regeneration after injury. We examined immunocyte infiltration and muscle regeneration in cardiotoxin (CTX)-injected soleus muscles of tail-suspended (TS) mice. In CTX-injected TS mice, the cross-sectional area of regenerating myofibers was smaller than that of weight-bearing (WB) mice, indicating that unloading delays muscle regeneration following CTX-induced skeletal muscle damage. Delayed infiltration of macrophages into the injured skeletal muscle was observed in CTX-injected TS mice. Neutrophils and macrophages in CTX-injected TS muscle were presented over a longer period at the injury sites compared with those in CTX-injected WB muscle. Disturbance of activation and differentiation of satellite cells was also observed in CTX-injected TS mice. Further analysis showed that the macrophages in soleus muscles were mainly Ly-6C-positive proinflammatory macrophages, with high expression of tumor necrosis factor-? and interleukin-1?, indicating that unloading causes preferential accumulation and persistence of proinflammatory macrophages in the injured muscle. The phagocytic and myotube formation properties of macrophages from CTX-injected TS skeletal muscle were suppressed compared with those from CTX-injected WB skeletal muscle. We concluded that the disturbed muscle regeneration under unloading is due to impaired macrophage function, inhibition of satellite cell activation, and their cooperation.
Related JoVE Video
A case of myelolipoma with bilateral adrenal hyperaldosteronism cured after unilateral adrenalectomy.
Intern. Med.
Show Abstract
Hide Abstract
Myelolipomas are adrenal tumors composed of both adipose and hematopoietic tissues which are rarely associated with primary aldosteronism (PA). Here, we report a case of myelolipoma associated with PA. Aldosterone hypersecretion from bilateral adrenal glands had been confirmed by adrenal venous sampling and pathological analyses, but PA was clinically cured after surgical removal of the unilateral adrenal gland together with the myelolipoma that was not producing aldosterone. It is suggested that myelolipomas may release some factors which stimulate aldosterone production in adrenal glands, although further investigation is necessary. Obesity-related hyperaldosteronism might in part participate in generation of hypertension in the present case.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.