JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2.
Biochem. Biophys. Res. Commun.
PUBLISHED: 08-24-2014
Show Abstract
Hide Abstract
Arf GTPase-activating proteins (Arf GAP) play important roles in the formation of the membrane vesicles that traffic between subcellular membranous organelles. The small Arf GTPase-activating protein (SMAP) subfamily of Arf GAPs has two members, SMAP1 and SMAP2, in mammals. The present study investigated whether these two proteins may have an overlapping function in addition to their previously reported distinct functions. Results showed that the presence of either SMAP1 or SMAP2 was sufficient for endocytosis of the transferrin receptor, and that transferrin incorporation was impaired only by the absence of both SMAP1 and SMAP2. This suggests the involvement of both SMAP1 and SMAP2 in transferrin endocytosis. Results also demonstrated a physical association between SMAP1 and SMAP2, which might serve as a basis for a functional interaction, and identified the intramolecular domains responsible for this association.
Related JoVE Video
Receptor sorting and actin dynamics at early endosomes.
Commun Integr Biol
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
The sorting machinery in early endosomes is crucial for intracellular homeostasis and signal transduction and its disruption leads to the development of various diseases. In spite of its significance, the molecular mechanism underlying this machinery remains largely unknown. Actin filaments are implicated in intracellular trafficking, including membrane fission at endocytosis, membrane stretching at the Golgi complex, and maturation of endosomes. We have recently found that actin is required for receptor sorting in early endosomes and identified cortactin as a candidate for actin regulation in early endosomes. Inhibition of actin dynamics leads to enlargement of early endosomes and impairment of the sorting; the latter is also observed in cortactin-depleted cells. The endosomal localization of cortactin was enhanced by dynasore, a dynamin inhibitor that effectively inhibits endosomal sorting, indicating that cortactin is involved in the sorting machinery in early endosomes. Here we discuss the role of actin filaments in early endosomes and other molecules implicated in endosomal trafficking.
Related JoVE Video
Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.
PLoS ONE
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.
Related JoVE Video
Localization of SMAP2 to the TGN and its function in the regulation of TGN protein transport.
Cell Struct. Funct.
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
SMAP2 is an Arf GTPase-activating protein that is located and functions on early endosome membranes. In the present study, the trans-Golgi network (TGN) was verified as an additional site of SMAP2 localization based on its co-localization with various TGN-marker proteins. Mutation of specific stretches of basic amino acid residues abolished the TGN-localization of SMAP2. Over-expression of wild-type SMAP2, but not of the mutated SMAP2, inhibited the transport of vesicular stomatitis virus-G protein from the TGN to the plasma membrane. In contrast, this transport was enhanced in SMAP2 (-/-) cells characterized by increased levels of the activated form of Arf. SMAP2 therefore belongs to an ArfGAP subtype that resides on the TGN and functions as a negative regulator of vesicle budding from the organelle.
Related JoVE Video
Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments.
PLoS ONE
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.