JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines.
Endocr. J.
PUBLISHED: 02-15-2014
Show Abstract
Hide Abstract
Cancer stem-like cells (CSCs) play important roles in cancer initiation and progression. CSCs have been isolated using several markers, but those for thyroid CSCs remain to be confirmed. We therefore conducted a comprehensive search for thyroid CSC markers. Expression of nine cell surface markers (CD13, CD15, CD24, CD44, CD90, CD117, CD133, CD166, and CD326) and aldehyde dehydrogenase (ALDH) activity, which are CSC markers in various solid cancers, and the ability to form spheres in vitro and tumors in vivo were investigated using eight thyroid cancer cell lines (FRO, KTC1/2/3, TPC1, WRO, ACT1, and 8505C). Among these, four cell lines (FRO, KTC3, ACT1, and 8505C) possessed the both abilities; however, common markers indicative of CSCs were not observed. The pattern of ability to form spheres was completely matched to that of tumor formation, suggesting that our sphere assay is valuable for assessment of tumor-forming ability. Next, the cells were sorted using these markers and subjected to the sphere assay. In three cell lines (FRO, KTC3, and ACT1), ALDH(pos) cells showed higher sphere forming ability than ALDH(neg) cells but not in other cells. CD326(hi) also appeared to be a candidate marker only in FRO cells. However, these subpopulations did not follow a classical hierarchical model because ALDH(neg) and CD326(low) fractions also generated ALDH(pos) and CD326(hi) cells, respectively. These data suggest that ALDH activity is probably a major candidate marker to enrich thyroid CSCs but not universal; other markers such as CD326 that regulate different CSC properties may exist.
Related JoVE Video
Disruption of transforming growth factor-? signaling in thyroid follicular epithelial cells or intrathyroidal fibroblasts does not promote thyroid carcinogenesis.
Endocr. J.
PUBLISHED: 12-10-2013
Show Abstract
Hide Abstract
Transforming growth factor ? (TGF-?) members, pleiotropic cytokines, play a critical role for carcinogenesis generally as a tumor suppressor in the early cancer development, but as a tumor promoter in the late stage of cancer progression. The present study was designed to clarify the role for TGF-? signaling in early thyroid carcinogenesis using the conditional Tgfbr2(floxE2/floxE2) knock-in mice, having 2 loxP sites at introns 1 and 2 of Tgfb2r gene. When these mice were crossed with thyroid peroxidase (TPO)-Cre or fibroblast-specific protein-1 (FSP1)-Cre, the resultant mice, Tgfbr2(tpoKO) and Tgfbr2(fspKO), lost TGF-? II receptor expression (thereby TGF-? signaling) specifically in the thyroid follicular epithelial cells or fibroblasts, respectively. The thyroid morphology was monitored up to 52 weeks in these mice, showing no tumor development, except one Tgfbr2(tpoKO) mouse developing follicular adenoma like-lesion. Our data suggest that TGF-? signaling in mesenchymal or follicular epithelial cells of the thyroid does not appear to function as a tumor suppressive barrier at the early stage of thyroid carcinogenesis.
Related JoVE Video
Postnatal expression of BRAFV600E does not induce thyroid cancer in mouse models of thyroid papillary carcinoma.
Endocrinology
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
The mutant BRAF (BRAF(V600E)) is the most common genetic alteration in papillary thyroid carcinomas (PTCs). The oncogenicity of this mutation has been shown by some genetically engineered mouse models. However, in these mice, BRAF(V600E) is expressed in all the thyroid cells from the fetal periods, and suppresses thyroid function, thereby leading to TSH elevation, which by itself promotes thyroid tumorigenesis. To overcome these problems, we exploited 2 different approaches, both of which allowed temporally and spatially restricted expression of BRAF(V600E) in the thyroid glands. First, we generated conditional transgenic mice harboring the loxP-neo(R)-loxP-BRAF(V600E)-internal ribosome entry site-green fluorescent protein sequence [Tg(LNL-BRAF(V600E))]. The double transgenic mice (LNL-BRAF(V600E);TPO-Cre) were derived from a high expressor line of Tg(LNL-BRAF(V600E)) mice and TPO-Cre mice; the latter expresses Cre DNA recombinase under the control of thyroid-specific thyroid peroxidase (TPO) promoter and developed PTC-like lesions in early life under normal serum TSH levels due to mosaic recombination. In contrast, injection of adenovirus expressing Cre under the control of another thyroid-specific thyroglobulin (Tg) promoter (Ad-TgP-Cre) into the thyroids of LNL-BRAF(V600E) mice did not induce tumor formation despite detection of BRAF(V600E) and pERK in a small fraction of thyroid cells. Second, postnatal expression of BRAF(V600E) in a small number of thyroid cells was also achieved by injecting the lentivirus expressing loxP-green fluorescent protein-loxP-BRAF(V600E) into the thyroids of TPO-Cre mice; however, no tumor development was again observed. These results suggest that BRAF(V600E) does not appear to induce PTC-like lesions when expressed in a fraction of thyroid cells postnatally under normal TSH concentrations.
Related JoVE Video
SNAIL induces epithelial-to-mesenchymal transition and cancer stem cell-like properties in aldehyde dehydroghenase-negative thyroid cancer cells.
Thyroid
PUBLISHED: 07-20-2013
Show Abstract
Hide Abstract
Epithelial-to-mesenchymal transition (EMT) is thought to play a critical role in the invasion and metastasis of cancer and to be associated with cancer stem cell (CSC) properties. It is not clear if there is a link between EMT and CSCs in thyroid cancers. We therefore investigated the CSC properties of thyroid cancers that underwent EMT.
Related JoVE Video
Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.
Am. J. Hum. Genet.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.
Related JoVE Video
Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-gamma receptor, knockout nonobese diabetic-H2h4 mice.
Endocrinology
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Iodine-induced experimental autoimmune thyroiditis in the nonobese diabetic (NOD)-H2h4 mouse is a prototype of animal models of Hashimotos thyroiditis in humans. Recent studies have shown the resistance to thyroiditis of NOD-H2h4 mice genetically deficient for either IL-17 or interferon (IFN)-?, implicating both of T helper type 1 (Th1) and Th17 immune responses in disease pathogenesis. However, we hypothesized that robust induction of a single arm of effector T cells (either Th1 or Th17) might be sufficient for inducing thyroiditis in NOD-H2h4 mice. To address this hypothesis, enhanced immune responses consisting of either Th1 or Th17 were induced by anti-CD25 antibody-mediated depletion of regulatory T cells (Treg) in thyroiditis-resistant IL-17 knockout (KO) or IFN-? receptor (IFN-?R) KO, respectively, NOD-H2h4 mice. Depletion of Treg in IL-17 KO mice (i.e. Th1 enhancement) elicited antithyroglobulin autoantibodies and thyroiditis. Immunohistochemical analysis of the thyroid glands revealed the similar intrathyroidal lymphocyte infiltration patterns, with CD4+ T and CD19+ B cells being dominant between the wild-type and Treg-depleted IL-17 KO mice. In contrast, Treg-depleted IFN-?R KO mice remained thyroiditis resistant. Intracellular cytokine staining assays showed differentiation of Th1 cells in IL-17 KO mice but not of Th17 cells in IFN-?R KO mice. Our findings demonstrate that a robust Th1 immune response can by itself induce thyroiditis in otherwise thyroiditis-resistant IL-17 KO mice. Thus, unlike Th17 cells in IFN-?R KO mice, Th1 cells enhanced by Treg depletion can be sustained and induce thyroiditis.
Related JoVE Video
Interleukin 10 deficiency attenuates induction of anti-TSH receptor antibodies and hyperthyroidism in a mouse Graves model.
J. Endocrinol.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
Experimental Graves-like hyperthyroidism can be induced in susceptible mouse strains by repetitive immunizations with recombinant adenovirus expressing the human full-length TSH receptor (TSHR) or its A-subunit. Previous studies have shown that splenocytes from immunized mice produce interferon (IFN)-? and interleukin (IL) 10 in response to antigen stimulation in an in vitro T cell recall assay. Although IFN-? is now well known to be essential for disease induction, the role(s) played by IL10 are unknown. Therefore, this study was conducted to clarify the significance of endogenous IL10 in the pathogenesis of experimental Graves disease using IL10 deficient (IL10(-/-)) mice. Our results show that T cell response was augmented when estimated by their antigen-specific secretion of the key cytokine IFN-?, but B cell function was dampened, that is, anti-TSHR antibody titers were decreased in IL10(-/-) mice, resulting in a lower incidence of Graves hyperthyroidism (54% in IL10(+/+) vs 25% in IL10(-/-)). Thus, in addition to IFN-?, these data clarified the role of IL10 for optimizing anti-TSHR antibody induction and eliciting Graves hyperthyroidism in our Graves mouse model.
Related JoVE Video
Dedifferentiation of human primary thyrocytes into multilineage progenitor cells without gene introduction.
PLoS ONE
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (?0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases.
Related JoVE Video
The effect of regulatory T-cell depletion on the spectrum of organ-specific autoimmune diseases in nonobese diabetic mice at different ages.
Autoimmunity
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the various outcomes by different timing and methods of Treg-depletion. This study was, therefore, designed to compare the consequences of Treg-depletion by the same method (anti-CD25 antibody) on the spectrum of organ-specific autoimmune diseases in NOD mice of different ages. Treg-depletion by anti-CD25 antibody at 10 days of age accelerated development of all three diseases we examined (insulitis/diabetes, thyroiditis, and sialitis); Treg-depletion at 4 weeks of age accelerated only diabetes but not thyroiditis or sialitis; and Treg-depletion at 12 weeks of age hastened only development of thyroiditis and exhibited little influence on diabetes or sialitis. Increased levels of insulin autoantibodies (IAA) were, however, observed in mice depleted of Tregs at 10 days of age, not in those at 4 weeks. Thus, the consequences of Treg-depletion on the spectrum of organ-specific autoimmune diseases depend on the timing of anti-CD25 antibody injection in NOD mice. Aging gradually tips balance between Teffs and Tregs toward Teff-dominance for diabetes, but this balance for thyroiditis and sialitis likely alters more intricately. Our data also suggest that the levels of IAA are not necessarily correlated with diabetes development.
Related JoVE Video
Current concentration of artificial radionuclides and estimated radiation doses from 137Cs around the Chernobyl Nuclear Power Plant, the Semipalatinsk Nuclear Testing Site, and in Nagasaki.
J. Radiat. Res.
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
To evaluate current environmental contamination and contributions from internal and external exposure due to the accident at the Chernobyl Nuclear Power Plant (CNPP) and nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), concentrations of artificial radionuclides in edible mushrooms, soils and stones from each area were analyzed by gamma spectrometry. Annual effective doses were calculated for each area from the cesium contamination. Calculated internal effective doses of (137)Cs due to ingestion of mushrooms were 1.8 × 10(-1) mSv/year (y) in Gomel city (around CNPP), 1.7 × 10(-1) mSv/y in Korosten city (around CNPP), 2.8 × 10(-4) mSv/y in Semipalatinsk city, and 1.3 × 10(-4) mSv/y in Nagasaki. Calculated external effective doses of (137)Cs were 3.4 × 10(-2) mSv/y in Gomel city, 6.2 × 10(-2) mSv/y in Korosten city, 2.0 × 10(-4) mSv/y in Semipalatinsk city, and 1.3 × 10(-4) mSv/y in Nagasaki. Distribution of radionuclides in stones collected beside Lake Balapan (in SNTS) were (241)Am (49.4 ± 1.4 Bq/kg), (137)Cs (406.3 ± 1.7 Bq/kg), (58)Co (3.2 ± 0.5 Bq/kg), and (60)Co (125.9 ± 1.1 and 126.1 ± 1.1 Bq/kg). The present study revealed that dose rates from internal and external exposure around CNPP were not sufficiently low and radiation exposure potency still exists even though current levels are below the public dose limit of 1 mSv/y (ICRP1991). Moreover, parts of the SNTS area may be still contaminated by artificial radionuclides derived from nuclear tests. Long-term follow-up of environmental monitoring around CNPP and SNTS, as well as evaluation of health effects in the population residing around these areas, may contribute to radiation safety with a reduction of unnecessary exposure of residents.
Related JoVE Video
Distinct role of T helper Type 17 immune response for Graves hyperthyroidism in mice with different genetic backgrounds.
Autoimmunity
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
T helper type 17 (Th17) cells, a newly identified effector T-cell subset, have recently been shown to play a role in numerous autoimmune diseases, including iodine-induced autoimmune thyroiditis in non-obese diabetic (NOD)-H2(h4) mice, which had previously been thought Th1-dominant. We here studied the role of Th17 in Graves hyperthyroidism, another thyroid-specific autoimmune disease, in a mouse model. Two genetically distinct BALB/c and NOD-H2(h4) strains with intact or disrupted IL-17 genes (IL-17(+/+) or IL-17(-/-)) were immunized with adenovirus (Ad) expressing the thyrotropin receptor (TSHR) A-subunit (Ad-TSHR289). Both IL-17(+/+) and IL-17(-/-) mice developed anti-TSHR antibodies and hyperthyroidism at equally high frequencies on the BALB/c genetic background. In contrast, some IL-17(+/+), but none of IL-17(-/-), mice became hyperthyroid on the NOD-H2(h4) genetic background, indicating the crucial role of IL-17 for development of Graves hyperthyroidism in non-susceptible NOD-H2(h4), but not in susceptible BALB/c mice. In the T-cell recall assay, splenocytes and lymphocytes from the draining lymph nodes from either mouse strains, irrespective of IL-17 gene status, produced IFN-? and IL-10 but not other cytokines including IL-17 in response to TSHR antigen. Thus, the functional significance of Th17 may not necessarily be predictable from cytokine expression patterns in splenocytes or inflammatory lesions. In conclusion, this is, to our knowledge, the first report showing that the role of Th17 cells for the pathogenesis of a certain autoimmune disease depends on the mouse genetic backgrounds.
Related JoVE Video
Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies.
Endocrinology
PUBLISHED: 06-23-2010
Show Abstract
Hide Abstract
Hashimotos thyroiditis, a common autoimmune disease, is associated with autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO). TPO, unlike abundant and easily purified Tg, is rarely investigated as an autoantigen in animals. We asked whether antibodies (Abs) develop to both TPO and Tg in thyroiditis that is induced (C57BL/6 and DBA/1 mice) or arises spontaneously (NOD.H-2h4 mice). Screening for TPOAbs was performed by flow cytometry using mouse TPO-expressing eukaryotic cells. Sera were also tested for binding to purified mouse Tg and human TPO. The antibody data were compared with the extent of thyroiditis. Immunization with mouse TPO adenovirus broke self-tolerance to this protein in C57BL/6 mice, but thyroiditis was minimal and TgAbs were absent. In DBA/1 mice with extensive granulomatous thyroiditis induced by Tg immunization, TPOAbs were virtually absent despite high levels of TgAbs. In contrast, antibodies to mouse TPO, with minimal cross-reactivity with human TPO, arose spontaneously in older (7-12 months) NOD.H-2h4 mice. Unexpectedly, TgAbs preceded TPOAbs, a time course paralleled in relatives of probands with juvenile Hashimotos thyroiditis. These findings demonstrate a novel aspect of murine and human thyroid autoimmunity, namely breaking B cell self-tolerance occurs first for Tg and subsequently for TPO.
Related JoVE Video
Enhanced response to mouse thyroid-stimulating hormone (TSH) receptor immunization in TSH receptor-knockout mice.
Endocrinology
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
Graves-like hyperthyroidism is induced in BALB/c mice by immunization with adenovirus expressing the human TSH receptor (TSHR) A-subunit (amino acids 1-289). However, because of nonidentity between the human and mouse TSHR ( approximately 87% amino acid homology), we compared the responses of mice immunized with adenoviruses expressing either the mouse or the human TSHR A-subunit. Wild-type (wt) BALB/c mice immunized with the mouse A-subunit developed neither TSHR antibodies (measured by flow cytometry) nor thyroid lymphocytic infiltration. However, wt C57BL/6 mice developed sparse intrathyroidal lymphocyte infiltration without antibody production. Depletion of naturally occurring regulatory CD4(+)CD25(+) T cells had little effect. These results indicate the inability to break tolerance to the mouse TSHR in wt mice. In contrast, TSHR knockout (KO) BALB/c mice generated mouse TSHR antibodies in response to mouse A-subunit immunization and augmented human TSHR antibody response to human A-subunit immunization. Thyroid-stimulating antibody titers measured in a functional bioassay were comparable in human A-subunit immunized wt mice and in TSHR KO mice immunized with either the mouse or human A-subunit. In conclusion, immune response to the mouse TSHR is readily induced in TSHR KO but not in wt mice. Only in the former does immunization with adenovirus expressing the mouse A-subunit generate antibodies capable of activating the mouse TSHR. TSHR KO mice are, therefore, of value for future studies dissecting the autoimmune response to the mouse TSHR.
Related JoVE Video
T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice.
Endocrinology
PUBLISHED: 09-24-2009
Show Abstract
Hide Abstract
T helper type 1(Th1)/Th2 paradigm has been expanded by discovery of a novel effector T cell (T(eff)) subset, Th17 cells, which produce a proinflammatory cytokine IL-17. Th17 cells have recently been shown to play a major role in numerous autoimmune diseases that had previously been thought to be Th1-dominant diseases. We here studied the significance of Th17 cells in iodine-induced autoimmune thyroiditis in nonobese diabetic-H2(h4) mice, a mouse model of Hashimotos thyroiditis in humans, which spontaneously develop antithyroglobulin autoantibodies and intrathyroidal lymphocyte infiltration when supplied with iodine in the drinking water. We observed increased numbers of Th1 and Th17 cells in spleen and accumulation of both types of T(eff) in the thyroid glands of iodine-fed wild-type mice, indicating that Th17 cells as well as Th1 cells constitute thyroid lesions. Furthermore, the incidence and severity of intrathyroidal lymphocyte infiltration, and the titers of antithyroglobulin autoantibodies were markedly reduced in iodine-treated IL-17(-/-) mice as compared with wild-type mice. Of interest, IL-17(+/-) mice showed an intermediate phenotype. Therefore, the present study, together with a previous report demonstrating the importance of Th1, not Th2, immune response for developing thyroiditis using mice deficient for interferon-gamma or IL-4, clearly indicates that both Th1 and Th17 cells are critical T(eff) subsets for the pathogenesis of spontaneous autoimmune thyroiditis in nonobese diabetic-H2(h4) mice.
Related JoVE Video
Induction of late-onset spontaneous autoimmune thyroiditis by a single low-dose irradiation in thyroiditis-prone non-obese diabetic-H2h4 mice.
J. Radiat. Res.
PUBLISHED: 09-16-2009
Show Abstract
Hide Abstract
The previous data regarding the effect of irradiation on thyroid autoimmunity are controversial. We have recently reported the exacerbation of autoimmune thyroiditis by a single low dose (0.5 Gy) of whole body irradiation in thyroiditis-prone non-obese diabetic (NOD)-H2(h4) mice treated with iodine for 8 weeks. However, it is uncertain in that report whether the results obtained by the provision of iodine in a relatively short period of time (8 weeks) accurately reflects the long-term consequences of low-dose irradiation on thyroid autoimmunity. Therefore, we repeated these experiments with mice that were monitored after irradiation without iodine treatment for up to 15 months. We found that a single low-dose (0.5 Gy) irradiation increased the incidence and severity of thyroiditis and the incidence and titers of anti-thyroglobulin autoantibodies at 15 months of age. The numbers of splenocytes and percentages of various lymphocyte subsets were not affected by irradiation. Thus, we conclude that low-dose irradiation also exacerbates late-onset spontaneous thyroiditis in NOD-H2(h4) mice; one plausible explanation for this may be the acceleration of immunological aging by irradiation.
Related JoVE Video
Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.
Thyroid
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects.
Related JoVE Video
Attenuation of induced hyperthyroidism in mice by pretreatment with thyrotropin receptor protein: deviation of thyroid-stimulating to nonfunctional antibodies.
Endocrinology
PUBLISHED: 04-23-2009
Show Abstract
Hide Abstract
Graves-like hyperthyroidism is induced by immunizing BALB/c mice with adenovirus expressing the thyrotropin receptor (TSHR) or its A-subunit. Nonantigen-specific immune strategies can block disease development and some reduce established hyperthyroidism, but these approaches may have unforeseen side effects. Without immune stimulation, antigens targeted to the mannose receptor induce tolerance. TSHR A-subunit protein generated in eukaryotic cells binds to the mannose receptor. We tested the hypothesis that eukaryotic A-subunit injected into BALB/c mice without immune stimulation would generate tolerance and protect against hyperthyroidism induced by subsequent immunization with A-subunit adenovirus. Indeed, one sc injection of eukaryotic, glycosylated A-subunit protein 1 wk before im A-subunit-adenovirus immunization reduced serum T(4) levels and the proportion of thyrotoxic mice decreased from 77 to 22%. Prokaryotic A-subunit and other thyroid proteins (thyroglobulin and thyroid peroxidase) were ineffective. A-subunit pretreatment reduced thyroid-stimulating and TSH-binding inhibiting antibodies, but, surprisingly, TSHR-ELISA antibodies were increased. Rather than inducing tolerance, A-subunit pretreatment likely expanded B cells that secrete nonfunctional antibodies. Follow-up studies supported this possibility and also showed that eukaryotic A-subunit administration could not reverse hyperthyroidism in mice with established disease. In conclusion, glycosylated TSHR A-subunit is a valuable immune modulator when used before immunization. It acts by deviating responses away from pathogenic toward nonfunctional antibodies, thereby attenuating induction of hyperthyroidism. However, this protein treatment does not reverse established hyperthyroidism. Our findings suggest that prophylactic TSHR A-subunit protein administration in genetically susceptible individuals may deviate the autoantibody response away from pathogenic epitopes and provide protection against future development of Graves disease.
Related JoVE Video
Expression of immunoregulatory molecules by thyrocytes protects nonobese diabetic-H2h4 mice from developing autoimmune thyroiditis.
Endocrinology
PUBLISHED: 03-25-2009
Show Abstract
Hide Abstract
One approach to prevent tissue destruction by autoimmune attack in organ-specific autoimmune diseases is to protect the target tissue from autoimmune reaction, regardless of its persistent activity. To provide proof-of-principle for the feasibility of this approach, the immunoregulatory molecules, TNF-related apoptosis-inducing ligand (TRAIL) and indoleamine 2, 3-dioxygenase, were expressed in the thyroid glands using adenovirus vector in nonobese diabetic-H2(h4) mice that spontaneously develop thyroiditis. Mice were anesthetized, and the thyroid glands were exposed by neck dissection, followed by in situ infection with adenovirus vector (5 x 10(10) particles per mouse) twice or thrice, starting 1 d or 4 wk before mice were supplied with sodium iodine (NaI) water. After 8 wk NaI provision, the extent of thyroiditis, serum titers of antithyroglobulin antibodies, and cytokine expression in the spleen were examined. In situ infection of adenovirus expressing TRAIL or indoleamine 2, 3-dioxygenase, but not green fluorescent protein, significantly suppressed thyroiditis scores. However, antithyroglobulin antibody titers and expression levels of cytokines (interferon-gamma and IL-4) in the spleen remained unaltered. Importantly, adenovirus infection 4 wk after NaI provision was also effective at suppressing thyroiditis. The suppressive effect of TRAIL appears to be mediated at least partly by accumulation of CD4(+)Foxp3(+) regulatory T cells into the thyroid glands. Thus, localized expression of immunoregulatory molecules efficiently protected the thyroid glands from autoimmune attack without changing the systemic autoimmunity in nonobese diabetic-H2(h4) mice. This kind of immunological intervention, although it does not suppress autoimmune reactivity, may have a potential for treating organ-specific autoimmune diseases.
Related JoVE Video
Studies in mice deficient for the autoimmune regulator (Aire) and transgenic for the thyrotropin receptor reveal a role for Aire in tolerance for thyroid autoantigens.
Endocrinology
PUBLISHED: 03-05-2009
Show Abstract
Hide Abstract
The autoimmune regulator (Aire) mediates central tolerance for many autoantigens, and autoimmunity occurs spontaneously in Aire-deficient humans and mice. Using a mouse model of Graves disease, we investigated the role of Aire in tolerance to the TSH receptor (TSHR) in Aire-deficient and wild-type mice (hyperthyroid-susceptible BALB/c background). Mice were immunized three times with TSHR A-subunit expressing adenovirus. The lack of Aire did not influence T-cell responses to TSHR protein or TSHR peptides. However, antibody levels were higher in Aire-deficient than wild-type mice after the second (but not the third) immunization. After the third immunization, hyperthyroidism persisted in a higher proportion of Aire-deficient than wild-type mice. Aire-deficient mice were crossed with transgenic strains expressing high or low-intrathyroidal levels of human TSHR A subunits. In the low-expressor transgenics, Aire deficiency had the same effect on the pattern of the TSHR antibody response to immunization as in nontransgenics, although the amplitude of the response was lower in the transgenics. High-expressor A-subunit transgenics were unresponsive to immunization. We examined intrathymic expression of murine TSHR, thyroglobulin, and thyroid peroxidase (TPO), the latter two being the dominant autoantigens in Hashimotos thyroiditis (particularly TPO). Expression of the TSHR and thyroglobulin were reduced in the absence of Aire. Dramatically, thymic expression of TPO was nearly abolished. In contrast, the human A-subunit transgene, lacking a potential Aire-binding motif, was unaffected. Our findings provide insight into how varying intrathymic autoantigen expression may modulate thyroid autoimmunity and suggest that Aire deficiency may contribute more to developing Hashimotos thyroiditis than Graves disease.
Related JoVE Video
[Thyroid cancer].
Nippon Rinsho
Show Abstract
Hide Abstract
The thyroid glands are a vulnerable organ to ionizing radiation. Indeed the epidemiological studies have revealed an increase in the incidences of thyroid cancer among atomic bomb survivors in Hiroshima and Nagasaki and radiation casualties in Chernobyl. The carcinogenic risk for the thyroids is dependent on radiation dose, and higher in younger people. Recent advances in molecular biology contribute to clarify the mechanisms for thyroid carcinogenesis at genetic and molecular levels. Here radiation-induced thyroid carcinogenesis is reviewed from epidemiological data to basic research.
Related JoVE Video
Adoptive transfer of antithyrotropin receptor (TSHR) autoimmunity from TSHR knockout mice to athymic nude mice.
Endocrinology
Show Abstract
Hide Abstract
We have recently shown that wild type mice are highly tolerant, whereas thyrotropin receptor (TSHR) knockout (KO) mice are susceptible to immunization with the mouse TSHR, the autoantigen in Graves disease. However, because TSHR KO mice lack the endogenous TSHR, Graves-like hyperthyroidism cannot be expected to occur in these mice. We therefore performed adoptive transfer of splenocytes from TSHR KO mice into nude mice expressing the endogenous TSHR. Anti-TSHR autoantibodies were detected in approximately 50 % recipient mice 4 wk after adoptive transfer of splenocytes (5 × 10?/mouse) from TSHR KO mice immunized with adenovirus expressing mTSHR A subunit and persisted for 24 wk. Depletion of regulatory T cells by anti-CD25 antibody in the donor mice increased successful transfer rates without increasing antibody levels. Some recipient mice showed transient increases in thyroid-stimulating antibodies and T? levels 4-8 wk after transfer, but many became thyroid-blocking antibody positive and hypothyroid 24 wk later. Adoptive transfer of splenocytes from naïve TSHR KO mice transiently induced very low antibody titers when the recipient mice were treated with anticytotoxic lymphocyte antigen 4 and antiprogrammed cell death 1 ligand 1 antibodies for 8 wk after transfer. Histologically, macrophages infiltrated the retrobulbar adipose tissues and extraocular muscles in a small fraction of the recipients. Our findings demonstrate successful adoptive transfer of anti-TSHR immune response from TSHR KO mice to nude mice. Although the recipient mice developed only transient and infrequent hyperthyroidism, followed by eventual hypothyroidism, induction of orbital inflammation suggests the possible role of anti-TSHR immune response for Graves orbitopathy.
Related JoVE Video
Thyrotropin signaling confers more aggressive features with higher genomic instability on BRAFV600E-induced thyroid tumors in a mouse model.
Thyroid
Show Abstract
Hide Abstract
Background: The BRAFV600E mutation is the most common genetic alteration in papillary thyroid carcinomas (PTCs). Transgenic mice overexpressing BRAFV600E in their thyroids under control of the thyroglobulin promoter (Tg-BRAF2 mice) developed invasive PTCs with high penetrance; however, these mice showed elevated TSH levels, which also stimulate proliferation of thyrocytes and tumorigenesis. The purpose of the present study was to investigate how TSH signaling cooperates with BRAFV600E in the process of thyroid carcinogenesis. Methods: We crossed Tg-BRAF2 mice with TSH receptor knockout (TshR-/-) mice. Four genetically distinct mice groups, Brafwt; TshR+/- (group 1), Brafwt; TshR-/- (group 2), Tg-BRAF2; TshR+/- (group 3), and Tg-BRAF2; TshR-/- (group 4), were sacrificed at 12 and 24 weeks of age. We performed histopathological analysis. Genomic instability was also evaluated by immunofluorescence for p53-binding protein 1 (53BP1) and ?H2AX. Invasiveness and genomic instability were also evaluated using thyroid PCCL3 cells. Results: Groups 3 and 4 developed distinct neoplasia comparable to human PTCs. Group 3 developed typically larger, more aggressive, invasive tumors compared to group 4. The frequency of 53BP1 and ?H2AX foci, indicators of genomic instability, in group 3 was higher than that in group 4. TSH signal also enhanced invasiveness and genomic instability in PCCL3 cells with BRAFV600E expression. Conclusion: These data demonstrate that the TSH signaling confers more aggressive features on BRAFV600E-induced thyroid tumors in mice. This might be due in part to accelerated genomic instability.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.