JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function.
Genes Dev.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology.
Related JoVE Video
Allelochemicals in the rhizosphere soil of Euphorbia himalayensis.
J. Agric. Food Chem.
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
Weed infestation has been known to cause considerable reductions in crop yields, thereby hindering sustainable agriculture. Many plants in genus Euphorbia affect neighboring plants and other organisms by releasing chemicals into the environment. In view of the serious threat of weeds to agriculture, the allelochemicals of Euphorbia himalayensis and their allelopathic effects were investigated. The extract of root exudates from rhizosphere soil exhibited allelopathic activities against crops (wheat, rape, and lettuce) and grasses (Poa annua, Festuca rubra, and red clover). Bioassay-guided fractionation and isolation from the root extract of E. himalayensis led to the characterization of two ellagic acid derivatives and a jatrophane diterpene, which observably showed phytotoxic activities against lettuce, Festuca arundinacea, and F. rubra. They were further confirmed by ultra-performance liquid chromatography-tandem mass spectrometry to have concentrations of 3.6, 3.8, and 8.99 nmol/g in the rhizospere soil, respectively. Bioassay indicated that the combination of the allelochemicals could be selective plant growth regulator in agriculture.
Related JoVE Video
Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents.
Respir Physiol Neurobiol
PUBLISHED: 06-09-2014
Show Abstract
Hide Abstract
The voltage-gated K(+) (KV) channels play an essential role in the etiology of chronic hypoxic pulmonary hypertension (CH-PH).Tanshinone IIA (TIIA), a major active component of Salvia miltiorrhiza Bunge (S. miltiorrhiza), has many biological protective effects. In the present study, we investigated whether KV channels were responsible for the protective effect of TIIA on CH-PH. In acute hypoxia experiments, the [Formula: see text] currents of pulmonary artery smooth muscle cells (PASMCs) isolated from healthy rats were determined in the absence or presence of TIIA (5?g/ml or 25?g/ml) or 4-AP (1mM). In chronic hypoxia experiments, rats were challenged by intermittent hypoxia or sustained hypoxia exposure for 4 weeks with or without TIIA (10mg/kg) treatment. Subsequently, the hemodynamic data and the pathomorphological changes of pulmonary arteries were gathered. The expressions of KV2.1 and KV1.5 in pulmonary arteries were tested by Western blotting and RT-PCR, respectively. PASMCs were detached from intermittent hypoxia or sustained hypoxia exposure rats to evaluate the [Formula: see text] currents. Results showed that TIIA markedly recovered acute hypoxia-induced the down-regulation of [Formula: see text] currents in PASMCs. Moreover, TIIA significantly restrained chronic intermittent hypoxia or sustained hypoxia-induced pulmonary artery wall remodeling, accompanied with modulating the expressions of KV2.1 and KV1.5, and reversing the down-regulation of [Formula: see text] currents. TIIA is thus an attractive potential therapy for CH-PH.
Related JoVE Video
Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae.
Elife
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
Defecation allows the body to eliminate waste, an essential step in food processing for animal survival.In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. Here we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca(2+) imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.
Related JoVE Video
Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by diguanidino-?-cyclodextrin.
J. Am. Chem. Soc.
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
In the supramolecular photocyclodimerization of 2-anthracenecarboxylate mediated by 6(A),6(D)-diguanidino-?-cyclodextrin (CD), the chiral sense and enantiomeric excess of the photoproduct were dynamic functions of temperature and cosolvent to afford the (M)-anti head-to-head cyclodimer in 64% ee in aqueous methanol at -70 °C but the antipodal (P)-isomer in 86% ee in aqueous ammonia at -85 °C, while the corresponding diamino-?-CD host did not show such unusual photochirogenic behaviors. The ee landscape was very steep against the temperature and sign-inverted against the ammonia content to reveal the opposite temperature dependence at low and high ammonia contents, for which an altered solvent structure and/or guanidinium-carboxylate interaction mode would be responsible.
Related JoVE Video
A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy.
J Mol Model
PUBLISHED: 02-16-2014
Show Abstract
Hide Abstract
In protein-ligand docking, an optimization algorithm is used to find the best binding pose of a ligand against a protein target. This algorithm plays a vital role in determining the docking accuracy. To evaluate the relative performance of different optimization algorithms and provide guidance for real applications, we performed a comparative study on six efficient optimization algorithms, containing two evolutionary algorithm (EA)-based optimizers (LGA, DockDE) and four particle swarm optimization (PSO)-based optimizers (SODock, varCPSO, varCPSO-ls, FIPSDock), which were implemented into the protein-ligand docking program AutoDock. We unified the objective functions by applying the same scoring function, and built a new fitness accuracy as the evaluation criterion that incorporates optimization accuracy, robustness, and efficiency. The varCPSO and varCPSO-ls algorithms show high efficiency with fast convergence speed. However, their accuracy is not optimal, as they cannot reach very low energies. SODock has the highest accuracy and robustness. In addition, SODock shows good performance in efficiency when optimizing drug-like ligands with less than ten rotatable bonds. FIPSDock shows excellent robustness and is close to SODock in accuracy and efficiency. In general, the four PSO-based algorithms show superior performance than the two EA-based algorithms, especially for highly flexible ligands. Our method can be regarded as a reference for the validation of new optimization algorithms in protein-ligand docking.
Related JoVE Video
Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae).
Phytochemistry
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Allelopathy, the negative effect on plants of chemicals released to the surroundings by a neighboring plant, is an important factor which contributes to the spread of some weeds in plant communities. In this field, Stellera chamaejasme L. (Thymelaeaceae) is one of the most toxic and ecologically-threatening weeds in some of the grasslands of north and west China. Bioassay-guided fractionation of root extracts of this plant led to the isolation of eight flavonoids 1-8, whose structures were elucidated by spectroscopic analysis. All compounds obtained, except 7-methoxylneochaejasmin A (4) and (+)-epiafzelechin (5), showed strong phytotoxic activity against Arabidopsis thaliana seedlings. Seedling growth was reduced by neochamaejasmin B (1), mesoneochamaejasmin A (2), chamaejasmenin C (3), genkwanol A (6), daphnodorin B (7) and dihydrodaphnodorin B (8) with IC50 values of 6.9, 12.1, 43.2, 74.8, 7.1 and 27.3?g/mL, respectively, and all of these compounds disrupted root development. Endogenous auxin levels at the root tips of the A. thaliana DR5::GUS transgenic line were largely reduced by compounds 1, 2 and 6-8, and were increased by compound 4. Moreover, the inhibition rate of A. thaliana auxin transport mutants pin2 and aux1-7 by compounds 1-8 were all lower than the wild type (Col-0). The influence of these compounds on endogenous auxin distribution is thus proposed as a critical factor for the phytotoxic effect. Compounds 1, 2, 4 and 8 were found in soils associated with S. chamaejasme, and these flavonoids also showed phytotoxicity to Clinelymus nutans L., an associated weed of S. chamaejasme. These results indicated that some phytotoxic compounds from roots of S. chamaejasme may be involved in the potential allelopathic behavior of this widespread weed.
Related JoVE Video
Retro-inverso CendR peptide-mediated polyethyleneimine for intracranial glioblastoma-targeting gene therapy.
Bioconjug. Chem.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
The development of nonviral gene delivery vectors offers the potential to provide effective treatment for glioblastoma in the form of gene therapy. Here, we report the use of retro-inverso C-end rule (CendR) peptide D(RPPREGR) as a targeting ligand to prepare a D(RPPREGR)-PEG-PEI gene vector. D(RPPREGR) peptide specifically recognized the neuropilin-1 receptor that was overexpressed on U87 glioma cells, and showed enhanced tumor spheroid penetration ability. Compared with parental RGERPPR, D(RPPREGR) possessed improved biological stability and had a higher affinity for U87 glioma cells; it also showed enhanced penetration of the tumor spheroid. mPEG-PEI/pDNA and D(RPPREGR)-PEG-PEI/pDNA complexes were prepared and MTT assay results revealed that the cytotoxicity of D(RPPREGR)-PEG-PEI complexes was significantly lower than that of PEI complexes, with cell survival rates above 80%. Qualitative and quantitative in vitro transfection results revealed that D(RPPREGR)-PEG-PEI complex transfection efficiencies were 1.9 times higher than those of mPEG-PEI. Fluorescent imaging and frozen sections of brain tissue demonstrated that the D(RPPREGR) modification improved the in vivo transfection efficiency of mPEG-PEI in nude mice bearing U87 gliomas. An antiglioblastoma assay revealed that D(RPPREGR)-PEG-PEI carrying the therapeutic gene pORF-hTRAIL significantly prolonged the survival time of intracranial U87 glioma-bearing mice from 25 to 30 days. Therefore, D(RPPREGR)-PEG-PEI appears to be suitable for use as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene therapy.
Related JoVE Video
Tumor-Penetrating Peptide Mediation: An Effective Strategy for Improving the Transport of Liposomes in Tumor Tissue.
Mol. Pharm.
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Currently, the inefficient transport of liposomes in tumor tissue hinders their clinical application. Tumor-penetrating peptides (TPP) are a series of targeting peptides with the function of penetrating tumor blood vessels and tumor stroma. This work aimed to improve the penetration of liposomes in tumor tissues by TPP modification, thereby enhancing the antitumor effect. First, RPARPAR, a TPP, was modified to the surface of liposomes loaded with doxorubicin. The RPARPAR-modified liposomes (RPA-LP) and unmodified liposomes (LP) showed spherical morphology with average sizes about 90 nm. RPA-LP exhibited remarkably increased cellular accumulation by PC-3 tumor cells than LP as evidenced by the cellular uptake test. The in vivo imaging study confirmed that RPARPAR modification significantly increased the liposome accumulation in subcutaneous tumor tissues. RPA-LP could penetrate through tumor blood vessels and tumor stroma and into the deep tumor tissues as evidence by the immunofluorescence staining analysis. The cytotoxicity of RPARPAR-modified doxorubicin liposomes (RPA-LP-DXR) is considerably increased compared with that of doxorubicin liposomes (LP-DXR). The RPA-LP-DXR also showed significantly (p < 0.005) stronger growth-inhibiting effect on tumor than LP-DXR, possibly due to the tumor-penetrating ability of RPA-LP and targeted killing of tumor cells. This study proved that TPP mediation may be an effective strategy for improving the transport of liposomes in tumor tissue.
Related JoVE Video
Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9.
Cell Stem Cell
PUBLISHED: 09-22-2013
Show Abstract
Hide Abstract
The CRISPR-Cas9 system has been employed to generate mutant alleles in a range of different organisms. However, so far there have not been reports of use of this system for efficient correction of a genetic disease. Here we show that mice with a dominant mutation in Crygc gene that causes cataracts could be rescued by coinjection into zygotes of Cas9 mRNA and a single-guide RNA (sgRNA) targeting the mutant allele. Correction occurred via homology-directed repair (HDR) based on an exogenously supplied oligonucleotide or the endogenous WT allele, with only rare evidence of off-target modifications. The resulting mice were fertile and able to transmit the corrected allele to their progeny. Thus, our study provides proof of principle for use of the CRISPR-Cas9 system to correct genetic disease.
Related JoVE Video
Tumor-penetrating peptide functionalization enhances the anti-glioblastoma effect of doxorubicin liposomes.
Nanotechnology
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
The targeted therapeutic effect of nano drug delivery system for glioblastoma has been hampered by the weak enhanced permeability and retention (EPR) effect of glioblastoma and the low delivering efficiency of NDDS in glioblastoma tissue. In this study, a tumor-penetrating peptide (RGERPPR), the specific ligand of neuropilin-1 overexpressed on glioblastoma and endothelial cells, was used as a targeting moiety to enhance the anti-glioblastoma effect of doxorubicin liposomes. Firstly, RGERPPR-PEG-DSPE was synthesized and used to prepare the RGERPPR peptide-functionalized liposomes (RGE-LS), which showed vesicle sizes of around 90 nm and narrow size distributions. The cellular uptake and in vivo near-infrared fluorescence imaging test displayed that RGE-LS exhibited increased uptake by glioblastoma cells and intracranial glioblastoma tissues. The cytotoxicity assay and anti-glioblastoma study proved that RGERPPR functionalization significantly enhanced the in vitro inhibitory effect of doxorubicin liposomes on glioblastoma cells and prolonged the median survival time of nude mice bearing intracranial glioblastoma. Finally, the immunofluorescence analysis evidenced that RGE-LS were able to penetrate through tumor vessels and stroma and deep into the whole tumor tissue. The results indicated that tumor-penetrating peptide functionalization is an effective strategy for enhancing the anti-glioblastoma effect of doxorubicin liposomes.
Related JoVE Video
Targeted gene delivery to glioblastoma using a C-end rule RGERPPR peptide-functionalised polyethylenimine complex.
Int J Pharm
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Safe and efficient systems capable of specifically targeting brain tumour cells represent a promising approach for the treatment glioblastoma multiforme. Neuropilin-1 (NRP-1) is over-expressed in U87 glioma cells. In the current study, the tumour specific peptide RGERPPR, which binds specifically to NRP-1, was used as a targeting ligand in a gene delivery strategy for glioblastoma. The RGERPPR peptide was coupled to branched polyethylenimine (PEI, 25kDa) using heterobifunctional Mal-PEG-NHS, resulting in a novel gene delivery polymer. Polymer/plasmid DNA (pDNA) complexes were formed and their sizes and zeta potentials were measured. Compared with the unmodified mPEG-PEI/pDNA complexes, the RGERPPR-PEG-PEI/pDNA complex led to a significant enhancement in intracellular gene uptake and tumour spheroid penetration. Furthermore, the RGERPPR-PEG-PEI/pDNA complex facilitated enhanced transfection efficiency levels, as well as a reduction in cytotoxicity when tested in U87 glioma cells in vitro. Most significantly of all, when complexes formed with pDsRED-N1 were injected into the tail vein of intracranial U87 tumour-bearing nude mice, the RGERPPR-PEG-PEI complexes led to improved levels of red fluorescence protein expression in the brain tissue. Taken together, the results show that RGERPPR-PEG-PEI could be used as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene delivery.
Related JoVE Video
Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-29-2013
Show Abstract
Hide Abstract
Mechanical stimuli, including tactile and sound signals, convey a variety of information important for animals to navigate the environment and avoid predators. Recent studies have revealed that Drosophila larvae can sense harsh or gentle touch with dendritic arborization (da) neurons in the body wall and can detect vibration with chordotonal organs (Cho). Whether they can also detect and respond to vibration or sound from their predators remains an open question. Here we report that larvae respond to sound of wasps and yellow jackets, as well as to pure tones of frequencies that are represented in such natural sounds, with startle and burrowing behaviors. The larval response to sound/vibration requires Cho neurons and, to a lesser extent, class IV da neurons. Our calcium imaging and electrophysiological experiments reveal that Cho neurons, but not class IV da neurons, are excited by natural sounds or pure tones, with tuning curves and intensity dependence appropriate for the behavioral responses. Furthermore, our study implicates the transient receptor potential (TRP) channels NOMPC, NANCHUNG, and INACTIVE, but not the dmPIEZO channel, in the mechanotransduction and/or signal amplification for the detection of sound by the larval Cho neurons. These findings indicate that larval Cho, like their counterparts in the adult fly, use some of the same mechanotransduction channels to detect sound waves and mediate the sensation akin to hearing in Drosophila larvae, allowing them to respond to the appearance of predators or other environmental cues at a distance with behaviors crucial for survival.
Related JoVE Video
Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense.
J. Agric. Food Chem.
PUBLISHED: 06-20-2013
Show Abstract
Hide Abstract
Trifolium pratense, a widespread legume forage plant, is reported to exhibit phytotoxic activity on other plants, but the active metabolites have not been clarified so far. A bioassay-guided fractionation of the root extracts led to the isolation of five isoflavonoids, which were elucidated by spectroscopic analysis. All of the purified compounds observably showed phytotoxic activities against Arabidopsis thaliana . Moreover, the inhibitory effects were concentration-dependent. The furan ring linked at C-4 and C-2 positions by an oxygen atom and a 1,3-dioxolane at C-4 and C-5 positions are considered to be critical factors for the phytotoxic activity. The concentrations of (6aR,11aR)-maackiain and (6aR,11aR)-trifolirhizin, concluded to be allelochemicals from soil around plants of T. pratense, were determined by HPLC and LC-MS to be 4.12 and 2.37 ?g/g, respectively. These allelochemicals, which showed remarkable activities against the weed Poa annua may play an important role in assisting the widespread occurrence of T. pratense in nature.
Related JoVE Video
Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China.
Antonie Van Leeuwenhoek
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.
Related JoVE Video
Synovial stem cells and their responses to the porosity of microfibrous scaffold.
Acta Biomater
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Tissue-specific stem cells can be coaxed or harvested for tissue regeneration. In this study, we identified and characterized a new type of stem cells from the synovial membrane of knee joint, named neural crest cell-like synovial stem cells (NCCL-SSCs). NCCL-SSCs showed the characteristics of neural crest stem cells: they expressed markers such as Sox10, Sox17 and S100?, were clonable, and could differentiate into neural lineages as well as mesenchymal lineages, although NCCL-SSCs were not derived from neural crest during the development. When treated with transforming growth factor ?1 (TGF-?1), NCCL-SSCs differentiated into mesenchymal stem cells (MSCs), lost the expression of Sox17 and the differentiation potential into neural lineages, but retained the potential of differentiating into mesenchymal lineages. To determine the responses of NCCL-SSCs to microfibrous scaffolds for tissue engineering, electrospun composite scaffolds with various porosities were fabricated by co-electrospinning of structural and sacrificial microfibers. The increase in the porosity in microfibrous scaffolds enhanced cell infiltration in vitro and in vivo, but did not affect the morphology and the proliferation of NCCL-SSCs. Interestingly, microfibrous scaffolds with higher porosity increased the expression of chondrogenic and osteogenic genes but suppressed smooth muscle and adipogenic genes. These results suggest that the differentiation of NCCL-SSCs can be controlled by both soluble chemical factors and biophysical factors such as the porosity of the scaffold. Engineering both NCCL-SSCs and scaffolds will have tremendous potential for tissue regeneration.
Related JoVE Video
Specificity and affinity quantification of protein-protein interactions.
Bioinformatics
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones.
Related JoVE Video
Plasma surface chemical treatment of electrospun poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration.
Tissue Eng Part A
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Poly(l-lactide) (PLLA) microfibrous scaffolds produced by electrospinning were treated with mild Ar or Ar-NH3/H2 plasmas to enhance cell attachment, growth, and infiltration. Goniometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate the modification of the scaffold surface chemistry by plasma treatment. AFM and XPS measurements showed that both plasma treatments increased the hydrophilicity without affecting the integrity of the fibrous structure and the fiber roughness, whereas Ar-NH3/H2 plasma treatment also resulted in surface functionalization with amine groups. Culture studies of bovine aorta endothelial cells and bovine smooth muscle cells on the plasma-treated PLLA scaffolds revealed that both Ar and Ar-NH3/H2 plasma treatments promoted cell spreading during the initial stage of cell attachment and, more importantly, increased the cell growth rate, especially for Ar plasma treatment. In vitro cell infiltration studies showed that both plasma treatments effectively enhanced cell migration into the microfibrous scaffolds. In vivo experiments involving the subcutaneous implantation of plasma-treated PLLA scaffolds under the skin of Sprague-Dawley rats also showed increased cell infiltration. The results of this study indicate that surface treatment of PLLA microfibrous scaffolds with mild Ar or Ar-NH3/H2 plasmas may have important implications in tissue engineering. Further modifications with bioactive factors should improve the functions of the scaffolds for specific applications.
Related JoVE Video
Nematicidal metabolites from roots of Stellera chamaejasme against Bursaphelenchus xylophilus and Bursaphelenchus mucronatus.
Pest Manag. Sci.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Bursaphelenchus xylophilus, the causal agent of pine wilt disease, severely damages pine forests, and Bursaphelenchus mucronatus, a species related to B. xylophilus, is weakly pathogenic. Because the use of synthetic pesticides to control pine wilt disease has raised concerns for human and environmental health, a search for useful botanically based compounds is needed.
Related JoVE Video
Tip-induced micropatterning of silk fibroin protein using in situ solution atomic force microscopy.
ACS Appl Mater Interfaces
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Silk fibroin (SF) is a promising candidate for a variety of application in the fields of tissue engineering, drug delivery, and biomedical optics. Recent research has already begun to explore the construction of nano- and micropatterned SF films under ambient environment. The structure and biocompatibility of SF are dependent on SF state (solution or solid) and the method of drying the SF solution to prepare various biomaterials such as films, sponges, and fibers. Therefore, it is important to explore the construction of SF nano- and micropatterns under aqueous solution. This paper reports a novel application of atomic force microscopy (AFM) under liquid for direct deposition of the relatively hydrophobic protein SF onto hydrophilic mica. We demonstrate that the AFM tip, in either the contact or the tapping mode, can fabricate SF micropatterns on mica with controlled surface topography. We show that the deposition process requires a mechanical force-induced SF sol-gel transition followed by a transfer to the mica surface at the tip-surface contact, and the efficiency of this process depends on not only AFM operation mode but also the SF bulk concentration, the SF amount on mica, and the AFM tip spring constant.
Related JoVE Video
Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.
Related JoVE Video
GSTP1 Ile105Val polymorphism and prostate cancer risk: evidence from a meta-analysis.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Glutathione S-transferase P1 (GSTP1) is thought to be involved in the detoxification of reactive carcinogen metabolites. Numerous epidemiological studies have evaluated the association of GSTP1 Ile105Val polymorphism with the risk of prostate cancer. However, the results remain inconclusive. To derive a more precise estimation, a meta-analysis was performed.
Related JoVE Video
Microarray analysis of differentially expressed microRNAs in allergic rhinitis.
Am J Rhinol Allergy
PUBLISHED: 12-22-2011
Show Abstract
Hide Abstract
Allergic rhinitis (AR) is a common disease characterized by chronic inflammation of the nasal mucosa, but we have not fully understood the mechanism responsible for the development of AR. MicroRNAs (miRNAs) are short endogenous noncoding RNAs regulating protein translation through a mechanism known as RNA interference. To understand the molecular mechanisms of miRNA involved in the pathogenesis of AR, expressed miRNAs in AR were investigated through genomewide microarray analysis.
Related JoVE Video
The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma.
Nanotechnology
PUBLISHED: 09-29-2011
Show Abstract
Hide Abstract
To establish a gene delivery system for brain targeting, a low molecular weight polyethylenimine (PEI(10 K)) was modified with myristic acid (MC), and complexed with DNA, yielding MC-PEI(10 K)/DNA nanoparticles successfully. The nanoparticles were observed to be successfully taken up by the brains of mice. The transfection efficiency of the nanoparticles was then investigated, and both the in vitro and in vivo gene expression of MC-PEI(10 K)/DNA nanoparticles is significantly higher than that of unmodified PEI(10 K)/DNA nanoparticles. The anti-glioblastoma effect of MC-PEI(10 K)/pORF-hTRAIL was demonstrated by the survival time of intracranial U87 glioblastoma-bearing mice. The median survival time of the MC-PEI(10 K)/pORF-hTRAIL group (28 days) was significantly longer than that of the PEI(10 K)/pORF-hTRAIL group (24 days), the MC-PEI(10 K)/pGL(3) group (21 days) and the saline group (22 days). Therefore, our results suggested that MC-PEI(10 K) could be potentially used for brain-targeted gene delivery and in the treatment of glioblastoma.
Related JoVE Video
LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics.
Nanotechnology
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Lymphatic metastasis can be greatly promoted by metastases growth and lymphangiogenesis in lymph nodes (LNs). LyP-1, a cyclic peptide, is able to specifically bind with tumor cells and tumor lymphatics in metastatic LNs. This work aimed to use LyP-1-conjugated liposomes (L-LS) loaded with doxorubicin (DOX) (L-LS/DOX) to suppress lymphatic metastasis by inhibiting both metastases and tumor lymphatics in LNs. L-LS were prepared and exhibited sizes around 90 nm and spherical morphology as characterized by transmission electron microscopy. The in vitro cellular studies showed that LyP-1 modification obviously increased liposome uptake by MDA-MB-435 tumor cells and enhanced the cytotoxicity of liposomal DOX. A popliteal and iliac LN metastases model was successfully established by subcutaneous inoculation of tumor cells to nude mice. The immunofluorescence staining analysis indicated that LyP-1 modification enabled specific binding of liposome with tumor lymphatics and enhanced the destroying effect of liposomal DOX on tumor lymphatics. The in vivo fluorescence imaging and pharmacodynamic studies showed that LyP-1 modification increased liposome uptake by metastatic LNs and that L-LS/DOX significantly decreased metastatic LN growth and LN metastasis rate. These results suggested that L-LS/DOX were an effective delivery system for suppressing lymphatic metastasis by simultaneously inhibiting LN metastases and tumor lymphatics.
Related JoVE Video
Light-induced structural and functional plasticity in Drosophila larval visual system.
Science
PUBLISHED: 09-10-2011
Show Abstract
Hide Abstract
How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.
Related JoVE Video
Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration.
Drug Deliv
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
In order to improve brain uptake of nanoparticles following nasal administration, odorranalectin (OL), the smallest lectin with much less immunogenicity than other members of lectin family, was conjugated to the surface of poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NP) in this study. The bioactivity of OL conjugated to the nanoparticles was verified by haemagglutination tests.Tissue distribution of OL-modified and unmodified nanoparticles (OL-NP and NP) was evaluated following intranasal (i.n.) administration by in vivo fluorescence imaging technique using DiR as a tracer, comparing with that of unmodified nanoparticles after intravenous (i.v.) injection. Besides, the nasal toxicity of OL-NP was evaluated on Calu-3 cell lines, toad palate and rat nasal mucosa.The results of TEM examination and dynamic light scattering showed a generally spherical shape of OL-NP with an average volume-based diameter around 90 nm. The haemagglutination test proved that OL retained its haemagglutination activity when conjugated to nanoparticles. The brain targeting indexes of NP and OL-NP following i.n. administration and NP following i.v. injection were 5.8, 11.6 and 0.08, respectively.Thus,i.n. administration demonstrated much better brain targeting efficiency than i.v. injection, and OL modification facilitated the nose-to-brain delivery of nanoparticles.Moreover, the toxicity assessment suggested good safety of OL-NP both in vitro and in vivo. In summary, odorranalectin-conjugated nanoparticle could be potentially used as a nose-to-brain drug delivery carrier for the treatment of CNS diseases.
Related JoVE Video
[Content of CD4+ CD25+ regulatory T cells in peripheral blood lymphocytes in patients with allergic rhinitis].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
To investigate the change of CD4- CD25 regulatory T cells (Tregs) of peripheral blood in allergic rhinitis (AR) patients.
Related JoVE Video
The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis.
PLoS ONE
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Human oxoguanine glycosylase 1 (hOGG1) in base excision repair (BER) pathway plays a vital role in DNA repair. Numerous epidemiological studies have evaluated the association between hOGG1 Ser326Cys polymorphism and the risk of cancer. However, the results of these studies on the association remain conflicting. To derive a more precise estimation of the association, we conducted a meta-analysis.
Related JoVE Video
LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor.
J Control Release
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
The application of liposomes in targeted therapy of lymphatic metastatic tumors has been hampered by the low uptake rate of liposome by metastatic lymph nodes. In this report, LyP-1, a peptide that can specifically bind tumor cells, tumor lymphatics and tumor-associated macrophages, was conjugated to liposomes for targeting and treating lymphatic metastatic tumors. Firstly, LyP-1-conjugated PEGylated liposomes loaded with fluorescein or doxorubicin (DOX) were prepared and showed satisfactory vesicle size and size distribution. The in vitro cellular uptake and in vivo near-infrared fluorescence imaging results showed that LyP-1 modification increased liposome uptake by tumor cells and metastatic lymph nodes, but did not increase uptake by normal lymph nodes. The immunofluorescence analysis evidenced that LyP-1-conjugated liposomes were distributed adjacent to tumor lymphatics and tumor-associated macrophages in metastatic lymph nodes. The pharmacodynamic study suggested that compared with unmodified liposomes, LyP-1-conjugated DOX-loaded liposomes exhibited enhanced inhibition effect on tumor cells in vitro and lymphatic metastatic tumors in vivo. Pathological examination showed that liposomal DOX caused reduced tissue damage to injection site compared with DOX solution. In summary, LyP-1-conjugated PEGylated liposomes could be targeted to metastatic lymph nodes based on their specific binding to tumor cells, tumor lymphatics and tumor-associated macrophages. They are a safe and effective drug delivery system of antineoplastic agents for targeted therapy of lymphatic metastatic tumors.
Related JoVE Video
Magnetic fluid-modeled microgravity: a novel way to treat tumor.
Med. Hypotheses
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
With the advances of nanotechnology in recent years, our understanding of the therapy of cancers has deepened and the development of new technologies for cancer diseases has emerged. Here, with the recent discoveries of nanomagnetic fluids as well as microgravity effects upon cancerous cells, we suggest an innovative method of treating tumor using magnetic fluid-modeled microgravity. Magnetic fluids are delivered by outside magnetic field to tumor issue either intravenously or through direct injection, and this is followed by application of an uniform external magnetic field that causes microgravity. The modeled microgravity is to inhibit cancerous cells growth and invasion.
Related JoVE Video
RNASEL Asp541Glu and Arg462Gln polymorphisms in prostate cancer risk: evidences from a meta-analysis.
Mol. Biol. Rep.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
Epidemiological studies have evaluated the association between RNASEL Asp541Glu and Arg462Gln polymorphisms and prostate cancer (PCa) risk. However, the results remain inconclusive. To derive a more precise estimation of the association between RNASEL polymorphisms and PCa risk, we performed a meta-analysis based on nineteen case-control studies. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Overall, we found that both Asp541Glu and Arg462Gln polymorphisms were not associated with PCa risk (for Asp541Glu polymorphism: Glu/Glu vs. Asp/Asp: OR 1.17, 95% CI: 0.95-1.45, P = 0.13; Glu/Asp vs. Asp/Asp: OR 1.02, 95% CI: 0.92-1.14, P = 0.70; for Arg462Gln polymorphism: Gln/Gln vs. Arg/Arg: OR 0.98, 95% CI: 0.88-1.08, P = 0.62; Gln/Arg vs. Arg/Arg: OR 0.97, 95% CI: 0.91-1.04, P = 0.53). The insignificant association was maintained in the dominant and the recessive genetic models. In subgroup analyses, the significant association was not detected in Caucasian populations. However, we found the significant association of RNASEL Asp541Glu polymorphism with sporadic PCa (Glu/Glu vs. Asp/Asp: OR 1.29, 95% CI: 1.04-1.59, P = 0.02; Glu/Asp vs. Asp/Asp: OR 1.24, 95% CI: 1.03-1.50, P = 0.03). In conclusion, we found that these RNASEL polymorphisms were not related to overall PCa risk, especially in Caucasians. However, in subgroup analyses we found a suggestion that RNASEL 541Gln allele might be a low-penetrent risk factor for sporadic PCa.
Related JoVE Video
Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinsons disease following intranasal administration.
J Control Release
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
Odorranalectin (OL) was recently identified as the smallest lectin with much less immunogenicity than other members of the lectin family. In this study, to improve nose-to-brain drug delivery and reduce the immunogenicity of traditional lectin modified delivery system, OL was conjugated to poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles and its biorecognitive activity on nanoparticles was verified by haemagglutination tests. Nose-to-brain delivery characteristic of OL-conjugated nanoparticles (OL-NP) was investigated by in vivo fluorescence imaging technique using DiR as a tracer. Besides, urocortin peptide (UCN), as a macromolecular model drug, was incorporated into nanoparticles and evaluated for its therapeutic efficacy on hemiparkinsonian rats following intranasal administration by rotation behavior test, neurotransmitter determination and tyrosine hydroxylase (TH) test. The results suggested that OL modification increased the brain delivery of nanoparticles and enhanced the therapeutic effects of UCN-loaded nanoparticles on Parkinsons disease. In summary, the OL-NPs could be potentially used as carriers for nose-to-brain drug delivery, especially for macromolecular drugs, in the treatment of CNS disorders.
Related JoVE Video
[Different expression of histamine H4 receptor in nasal mucosa in allergic rhinitis patients].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
PUBLISHED: 12-22-2010
Show Abstract
Hide Abstract
To observe expression and distribution of histamine H4 receptor in nasal mucosa in normal people and allergic rhinitis patients,and understand role of histamine H4 receptor in allergic rhinitis.
Related JoVE Video
Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery.
Mol. Pharm.
PUBLISHED: 11-01-2010
Show Abstract
Hide Abstract
Three-finger snake neurotoxins have been widely investigated for their high binding affinities with nicotinic acetylcholine receptors (nAChRs), which are widely expressed in the central nervous system including the blood-brain barrier and thus mediate intracranial drug delivery. The loop 2 segments of three-finger snake neurotoxins are considered as the binding domain with nAChRs, and thus, they may have the potential to enhance drug or drug delivery system intracranial transport. In the present work, binding of the synthetic peptides to the neuronal nAChRs was assessed by measuring their ability to inhibit the binding of (125)I-?-bungarotoxin to the receptor. The loop 2 segment of Ophiophagus hannah toxin b (KC2S) showed high binding affinity, and the competitive binding IC(50) value was 32.51 nM. Furthermore, the brain targeting efficiency of KC2S had been investigated in vitro and in vivo. The specific uptake by brain capillary endothelial cells (BCECs) demonstrated that KC2S could be endocytosized after binding with nAChRs. In vivo, the qualitative and quantitative biodistribution results of fluorescent dyes (DiR or coumarin-6) indicated that KC2S modified poly(ethylene glycol)-poly(lactic acid) micelles (KC2S-PEG-PLA micelles) could enhance intracranial drug delivery. Furthermore, intravenous treatment with paclitaxel-encapsulated KC2S-PEG-PLA micelles (KC2S-PEG-PLA-PTX micelles) afforded robust inhibition of intracranial glioblastoma. The median survival time of KC2S-PEG-PLA-PTX-micelle-treated mice (47.5 days) was significantly longer than that of mice treated by mPEG-PLA-PTX micelles (41.5 days), Taxol (38.5 days), or saline (34 days). Compared with the short peptide derived from rabies virus glycoprotein (RVG29) that has been previously reported as an excellent brain targeting ligand, KC2S has a similar binding affinity with neuronal nAChRs but fewer amino acid residues. Thus, we concluded that the loop 2 segment of Ophiophagus hannah toxin b could bind with neuronal nAChRs and thus enhance intracranial drug delivery for the treatment of central nervous system diseases.
Related JoVE Video
[Preliminary study on the mechanism of spontaneous rhythmic contraction in rabbit portal vein].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
This study sought to probe into the mechanism of spontaneous contraction of portal vein. The morphological and electrophysiological characteristics of the freshly isolated interstitial cells (ICs) of rabbit portal vein were investigated by using immunohistochemical and conventional whole-cell patch clamp techniques. The isolated interstitial cells exhibited stellate-shaped or spindle-shaped bodies with a variable number of thin processes projecting from cell bodies, and these cells were noted to be c-Kit immunopositive. Under conventional whole-cell patch clamp configuration, the membrane potential was held at -60 mV, the spontaneous rhythmic inward currents were recorded in ICs, and the frequencies of which were similar to those of spontaneous contraction of portal vein. The inward currents were insensitive to nicardipine (an L-type calcium channel blocker) but could be abolished by gadolinium (a non-selective cation channel blocker). The results suggested that the spontaneous rhythmic inward currents recorded in freshly isolated ICs may be pacemaker currents which elicit the spontaneous contraction of portal vein.
Related JoVE Video
Development and function of central cell in angiosperm female gametophyte.
Genesis
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
The central cell characterizes the angiosperm female gametophyte (embryo sac or megagametophyte) in that it directly participates in "double fertilization" to initiate endosperm development, a feature distinguishing angiosperm from all other plant taxa. Polygonum-type central cell is a binucleate cell that, upon fertilization with one of the two sperm cells, forms triploid endosperm to nourish embryo development. Although the formation and the structure of central cell have well been elucidated, the molecular mechanisms for its specification and development remain largely unknown. The central cell plays a critical role in pollen tube guidance during pollination and in endosperm initiation after fertilization. Recently, a group of mutants affecting specific steps of central cell development and function have been identified, providing some clues in understanding these questions. This review summarizes our current knowledge about central cell development and function, and presents overview about hypotheses for its evolution.
Related JoVE Video
Structural selection of ionic-complementary peptides with electrostatic interactions.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 02-24-2010
Show Abstract
Hide Abstract
The structures of the peptides and their assembly are largely modulated by the environment. To discover the physical principles governing the structural modulations of peptides by the environment would be useful for many applications. As the typical examples, the structures of three kinds of ionic-complementary EAK16-family peptides under various environmental conditions are studied with simulations in this work. A model with intermediate resolution is used, in which both the backbone hydrogen bonds and electrostatic interactions are explicitly considered. The thermodynamics of these peptides (including the free energy and heat capacity) are described for various strengths of the electrostatic interactions which reflect the variation of environment. With these results, the phase diagrams of these peptides related to the temperature and the strength of electrostatic interactions are presented and compared. Based on the differences in the phase structures of the peptide, the different aggregation behaviors are explained based on the monomeric structural features of the peptides. Through the analysis on the stability of various secondary structures of these peptides, it is demonstrated that the charge pattern is the basic reason of the different responses of the EAK16-family peptides to the environmental changes. These results provide some examples and insights for the principles of structural selection by environment and may be helpful for further analysis and designs of peptide systems.
Related JoVE Video
Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system.
J Drug Target
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.
Related JoVE Video
Nucleation process in the folding of a domain-swapped dimer.
Phys Rev E Stat Nonlin Soft Matter Phys
PUBLISHED: 02-08-2010
Show Abstract
Hide Abstract
Nucleation processes are important for the understanding in protein dynamics. To evaluate the effect of nucleation mechanism in dimerization process, a domain-swapped dimer (Esp8) is simulated with the symmetrized G? model and the classical G? model. The pathways of the dimerization are analyzed with computational phi -analysis method. It is found out that some nuclei are observed in the kinetic steps of the dimeric association though the whole pathway is a process with multiple intermediate states. The key residues in the nuclei are rather similar to those observed in the monomeric folding. The differences with the monomeric cases are also discussed. These differences illustrate the effects of dimeric feature on the nucleation process. Besides, manual mutations are carried out to illustrate the importance of the interactions related to the nuclei. It is observed that the mutations in the nuclei-related interactions apparently change the dynamics while other mutations have little effect on the kinetics. All of these results outline a picture that the nucleation processes act as the fundamental steps of high-order organization of protein systems.
Related JoVE Video
Protein folding simulations: from coarse-grained model to all-atom model.
IUBMB Life
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based G?-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL, the development of discrete MD and its application in studying the alpha-beta conformational conversion and oligomer assembling process, and the modeling of metal ion involved protein folding.
Related JoVE Video
[Study on the expression of Eotaxin and the role of histamine in allergic rhinitis].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
PUBLISHED: 01-07-2009
Show Abstract
Hide Abstract
To explore the expression of Eotaxin and the effect of histamine in allergic rhinitis model (AR), and aim to explore the pathogenesis of AR.
Related JoVE Video
Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation.
Nature
Show Abstract
Hide Abstract
Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.
Related JoVE Video
Association of GSTM1 null allele with prostate cancer risk: evidence from 36 case-control studies.
PLoS ONE
Show Abstract
Hide Abstract
Glutathione S-transferase M1 (GSTM1) is thought to be involved in detoxifying several carcinogens and may play a vital role in tumorigenesis. Numerous studies have evaluated the association between GSTM1 null/present polymorphism and risk of prostate cancer (PCa). However, the results remain inconsistent. To derive a more precise estimation, we performed a meta-analysis.
Related JoVE Video
[Dynamic imaging assessment on the upper airway in patients with obstructive sleep apnea hypopnea syndrome].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
Show Abstract
Hide Abstract
It is vital to make an individual plan for each patient with obstructive sleep apnea-hypopnea syndrome (OSAHS) according to the obstruction sites. The high resolution anatomical information of upper airway and soft tissue can be obtained, especially by MRI and CT scans. Dynamic and state-dependent imaging techniques are beneficial to study stereo changes of anatomy and morphology of upper airway in quiet breathing, sleeping or airway closure. Although dynamic imaging examination has value in diagnosis and treatment of OSAHS, there has no uniform position diagnosis standard. This article reviews the history of dynamic imaging study on OSAHS, the advantages and disadvantages of various imaging technologies and prospects of imaging position diagnosis.
Related JoVE Video
The improving effects on hepatic fibrosis of interferon-? liposomes targeted to hepatic stellate cells.
Nanotechnology
Show Abstract
Hide Abstract
No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor- (PDGFR- ), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR- to deliver interferon (IFN)- to HSCs. The pPB-SSL-IFN- showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN- mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN- showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN- were less than those treated with SSL-IFN- , IFN- and the control group. In vitro pPB-SSL-IFN- was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN- might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.
Related JoVE Video
Differentiation of multipotent vascular stem cells contributes to vascular diseases.
Nat Commun
Show Abstract
Hide Abstract
It is generally accepted that the de-differentiation of smooth muscle cells, from the contractile to the proliferative/synthetic phenotype, has an important role during vascular remodelling and diseases. Here we provide evidence that challenges this theory. We identify a new type of stem cell in the blood vessel wall, named multipotent vascular stem cells. Multipotent vascular stem cells express markers, including Sox17, Sox10 and S100?, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell-like cells that subsequently differentiate into smooth muscle cells. On the other hand, we perform lineage tracing with smooth muscle myosin heavy chain as a marker and find that multipotent vascular stem cells and proliferative or synthetic smooth muscle cells do not arise from the de-differentiation of mature smooth muscle cells. In response to vascular injuries, multipotent vascular stem cells, instead of smooth muscle cells, become proliferative, and differentiate into smooth muscle cells and chondrogenic cells, thus contributing to vascular remodelling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of multipotent vascular stem cells, rather than the de-differentiation of smooth muscle cells, contributes to vascular remodelling and diseases.
Related JoVE Video
Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds.
Acta Biomater
Show Abstract
Hide Abstract
Electrospun scaffolds are used extensively in tissue-engineering applications as they offer a cell-friendly microenvironment. However, one major limitation is the dense fibers, small pore size and consequently poor cell infiltration. Here, we employ a femtosecond (FS) laser system to ablate and create microscale features on electrospun poly(L-lactide) (PLLA) nanofibrous scaffolds. Upon determining the ablation parameters, we pattern structured holes with diameters of 50, 100 and 200 ?m and spacings of 50 and 200 ?m between adjacent holes on the scaffolds. The elastic moduli of ablated scaffolds decrease with the decrease in spacing and the increase in hole size. Cells seeded on the laser-ablated scaffolds exhibit different morphology but similar proliferation rate when compared with control (non-ablated) scaffold. Furthermore, animal studies indicate that ablated scaffolds facilitate endothelial cell ingrowth as well as drastically increase M2 macrophage and overall cell infiltration. These findings demonstrate that FS laser ablation can be used to increase cell infiltration into nanofibrous scaffolds. Laser ablation not only can create desired features in micrometer length scale but also presents a new approach in the fabrication of three-dimensional porous constructs for tissue engineering.
Related JoVE Video
Specificity quantification of biomolecular recognition and its implication for drug discovery.
Sci Rep
Show Abstract
Hide Abstract
Highly efficient and specific biomolecular recognition requires both affinity and specificity. Previous quantitative descriptions of biomolecular recognition were mostly driven by improving the affinity prediction, but lack of quantification of specificity. We developed a novel method SPA (SPecificity and Affinity) based on our funneled energy landscape theory. The strategy is to simultaneously optimize the quantified specificity of the "native" protein-ligand complex discriminating against "non-native" binding modes and the affinity prediction. The benchmark testing of SPA shows the best performance against 16 other popular scoring functions in industry and academia on both prediction of binding affinity and "native" binding pose. For the target COX-2 of nonsteroidal anti-inflammatory drugs, SPA successfully discriminates the drugs from the diversity set, and the selective drugs from non-selective drugs. The remarkable performance demonstrates that SPA has significant potential applications in identifying lead compounds for drug discovery.
Related JoVE Video
Simvastatin modulates remodeling of Kv4.3 expression in rat hypertrophied cardiomyocytes.
Int. J. Biol. Sci.
Show Abstract
Hide Abstract
Hypertrophy has been shown to be associated with arrhythmias which can be caused by abnormal remodeling of the Kv4-family of transient potassium channels. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) have recently been shown to exert pleiotropic protective effects in cardiovascular diseases, including anti-arrhythmias. It is hypothesized that remodeling of Kv4.3 occurs in rat hypertrophied cardiomyocytes and is regulated by simvastatin.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.