JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44.
Int J Mol Sci
PUBLISHED: 03-22-2014
Show Abstract
Hide Abstract
Abscisic acid (ABA) signaling plays important roles in plant growth, development and adaptation to various stresses. RCAR1/PYL9 has been known as a cytoplasm and nuclear ABA receptor in Arabidopsis. To obtain further insight into the regulatory mechanism of RCAR1/PYL9, a yeast two-hybrid approach was performed to screen for RCAR1/PYL9-interacting proteins and an R2R3-type MYB transcription factor, AtMYB44, was identified. The interaction between RCAR1/PYL9 and AtMYB44 was further confirmed by glutathione S-transferase (GST) pull-down and bimolecular fluorescence complementation (BiFC) assays. Gene expression analysis showed that AtMYB44 negatively regulated the expression of ABA-responsive gene RAB18, in contrast to the opposite role reported for RCAR1/PYL9. Competitive GST pull-down assay and analysis of phosphatase activity demonstrated that AtMYB44 and ABI1 competed for binding to RCAR1/PYL9 and thereby reduced the inhibitory effect of RCAR1/PYL9 on ABI1 phosphatase activity in the presence of ABA in vitro. Furthermore, transient activation assay in protoplasts revealed AtMYB44 probably also decreased RCAR1/PYL9-mediated inhibition of ABI1 activity in vivo. Taken together, our work provides a reasonable molecular mechanism of AtMYB44 in ABA signaling.
Related JoVE Video
Toxic effects of a high dose of non-ionic iodinated contrast media on renal glomerular and aortic endothelial cells in aged rats in vivo.
Toxicol. Lett.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Iodinated contrast media (CM) can induce apoptosis and necrosis of renal tubular cells. The injuries of endothelial cells induced by CM on the systemic condition have not been fully understood. To assess the toxic effects of non-ionic CM on the glomerular and aortic endothelial cells, iopromide and iodixanol, two kinds of representative non-ionic CM, were used for the in vivo study. Sixty aged rats were respectively received the agents or normal sodium intravascularly. No obvious apoptosis and morphological change was detected in the glomerular and aortic endothelial cells apart from renal tubules after CM administration. However, expressions of the nitric oxide synthase (eNOS) in glomerular endothelium were decreased at 12h after CM injection. Furthermore, plasma creatinine and endothelin-1 were increased and plasma nitric oxide (NO) was decreased significantly after CM administration. However, we failed to observe the significant increase of plasma von Willebrand Factor. These results suggest that non-ionic iodinated CM do not induce apoptosis and necrosis of glomerular and aortic endothelial cells in vivo. Decreased eNOS expression and increased plasma endothelin-1 may be involved in non-ionic iodinated CM-induced endothelial dysfunction and kidney injury.
Related JoVE Video
Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice.
Acta Biochim. Biophys. Sin. (Shanghai)
Show Abstract
Hide Abstract
Neovascularization and the formation of collateral vessels are often impaired in diabetes mellitus (DM) population compared with non-diabetics. Alterations in vascular endothelial growth factor (VEGF) signaling and endothelial nitric oxide synthase (eNOS) dysfunction have been confirmed to play a crucial role in impaired neovascularization in diabetic mice. Accumulating data have suggested that Rg1, a main component of Panax ginseng, has the ability to promote tubulogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and that the mechanism involves increased expression level of VEGF as well as increased eNOS activation. Thus, we speculated that Rg1 might also have therapeutic effects on the impairment of neovascularization in diabetic individuals. The aim of the present study was to investigate whether Rg1 could improve angiogenesis in ischemic hindlimb of diabetic mice in vivo. Our data demonstrated that Rg1 treatment resulted in improved angiogenesis in the diabetic ischemic hindlimb, and the potential mechanism might involve increased eNOS activation, upregulated VEGF expression, and inhibited apoptosis. Our results suggest that Rg1 may be used as a novel and useful adjunctive drug for the therapy of peripheral arterial disease in DM.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.