<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-PS.</th>
<th>PHYSICAL SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-PS1.</td>
<td>Matter and Its Interactions</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>Students who demonstrate understanding can:</td>
<td></td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-1.</td>
<td>Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coordination Chemistry Complexes</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-2.</td>
<td>Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assembly of a Reflux System for Heated Chemical Reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conducting Reactions Below Room Temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coordination Chemistry Complexes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining Rate Laws and the Order of Reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining the Empirical Formula</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining the Solubility Rules of Ionic Compounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Catalysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Titration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Le Châtelier's Principle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preparing Anhydrous Reagents and Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proton Exchange Membrane Fuel Cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solutions and Concentrations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spectrophotometric Determination of an Equilibrium Constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using Differential Scanning Calorimetry to Measure Changes in Enthalpy</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-4.</td>
<td>Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conducting Reactions Below Room Temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining Rate Laws and the Order of Reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Le Châtelier's Principle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using Differential Scanning Calorimetry to Measure Changes in Enthalpy</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-5.</td>
<td>Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conducting Reactions Below Room Temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining Rate Laws and the Order of Reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enzyme Assays and Kinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Catalysis</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-6.</td>
<td>Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assembly of a Reflux System for Heated Chemical Reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Le Châtelier's Principle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Separation of Mixtures via Precipitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spectrophotometric Determination of an Equilibrium Constant</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-7.</td>
<td>Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assembly of a Reflux System for Heated Chemical Reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conducting Reactions Below Room Temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coordination Chemistry Complexes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining Rate Laws and the Order of Reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining the Empirical Formula</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Determining the Solubility Rules of Ionic Compounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Catalysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Titration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preparing Anhydrous Reagents and Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proton Exchange Membrane Fuel Cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solutions and Concentrations</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS1-8.</td>
<td>Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.</td>
</tr>
<tr>
<td>STANDARD</td>
<td>KS.HS-PS.</td>
<td>PHYSICAL SCIENCE</td>
</tr>
<tr>
<td>BENCHMARK</td>
<td>HS-PS2.</td>
<td>Motion and Stability: Forces and Interactions</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td></td>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS2-3.</td>
<td>Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS2-5.</td>
<td>Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS2-6.</td>
<td>Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.</td>
</tr>
<tr>
<td>STANDARD</td>
<td>KS.HS-PS.</td>
<td>PHYSICAL SCIENCE</td>
</tr>
<tr>
<td>BENCHMARK</td>
<td>HS-PS3.</td>
<td>Energy</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td></td>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS3-1.</td>
<td>Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS3-2.</td>
<td>Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as either motions</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS3-3.</td>
<td>Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS3-5.</td>
<td>Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.</td>
</tr>
<tr>
<td>STANDARD</td>
<td>KS.HS-PS.</td>
<td>PHYSICAL SCIENCE</td>
</tr>
<tr>
<td>BENCHMARK</td>
<td>HS-PS4.</td>
<td>Waves and Their Applications in Technologies for Information Transfer</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>Students who demonstrate understanding can:</td>
<td></td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS4-2.</td>
<td>Evaluate questions about the advantages of using a digital transmission and storage of information.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-PS4-4.</td>
<td>Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.</td>
</tr>
</tbody>
</table>

JoVE

- Abdominal Exam II: Percussion
- Auscultation
- Cyclic Voltammetry (CV)
- Ear Exam
- Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat
- Percussion

JoVE

- fMRI: Functional Magnetic Resonance Imaging

JoVE

- Gas Chromatography (GC) with Flame-Ionization Detection
- fMRI: Functional Magnetic Resonance Imaging

JoVE

- Using GIS to Investigate Urban Forestry

JoVE

- An Introduction to Drosophila melanogaster
- An Introduction to the Zebrafish: Danio rerio
- An Overview of Genetics and Disease
- Color Afterimages
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Histological Sample Preparation for Light Microscopy
- Introduction to Fluorescence Microscopy
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-PS4-5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(null)</td>
<td>Communicate technical information about how some technological devices</td>
</tr>
<tr>
<td></td>
<td>use the principles of wave behavior and wave interactions with matter</td>
</tr>
<tr>
<td></td>
<td>to transmit and capture information and energy.</td>
</tr>
<tr>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td>• Abdominal Exam I: Inspection and Auscultation</td>
</tr>
<tr>
<td></td>
<td>• Abdominal Exam IV: Acute Abdominal Pain Assessment</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Behavioral Neuroscience</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Cognition</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Learning and Memory</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Motor Control</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Neuroanatomy</td>
</tr>
<tr>
<td></td>
<td>• An Introduction to Neurophysiology</td>
</tr>
<tr>
<td></td>
<td>• An Overview of Alkenone Biomarker Analysis for Paleothermometry</td>
</tr>
<tr>
<td></td>
<td>• An Overview of bGDGT Biomarker Analysis for Paleoclimatology</td>
</tr>
<tr>
<td></td>
<td>• Auscultation</td>
</tr>
<tr>
<td></td>
<td>• Color Afterimages</td>
</tr>
<tr>
<td></td>
<td>• Community DNA Extraction from Bacterial Colonies</td>
</tr>
<tr>
<td></td>
<td>• Conducting Reactions Below Room Temperature</td>
</tr>
<tr>
<td></td>
<td>• Conversion of Fatty Acid Methyl Esters by Saponification for Uk37</td>
</tr>
<tr>
<td></td>
<td>Paleothermometry</td>
</tr>
<tr>
<td></td>
<td>• Coordination Chemistry Complexes</td>
</tr>
<tr>
<td></td>
<td>• Cranial Nerves Exam I (I-VI)</td>
</tr>
<tr>
<td></td>
<td>• Decision-making and the Iowa Gambling Task</td>
</tr>
<tr>
<td></td>
<td>• Decoding Auditory Imagery with Multivoxel Pattern Analysis</td>
</tr>
<tr>
<td></td>
<td>• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>• Determining the Empirical Formula</td>
</tr>
<tr>
<td></td>
<td>• Ear Exam</td>
</tr>
<tr>
<td></td>
<td>• Electro-encephalography (EEG)</td>
</tr>
<tr>
<td></td>
<td>• Emergent Lateral Canthotomy and Inferior Catholysis</td>
</tr>
<tr>
<td></td>
<td>• Event-related Potentials and the Oddball Task</td>
</tr>
<tr>
<td></td>
<td>• Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction</td>
</tr>
<tr>
<td></td>
<td>• Eye Exam</td>
</tr>
<tr>
<td></td>
<td>• Eye Tracking in Cognitive Experiments</td>
</tr>
<tr>
<td></td>
<td>• Fear Conditioning</td>
</tr>
</tbody>
</table>
Finding Your Blind Spot and Perceptual Filling-in
Förster Resonance Energy Transfer (FRET)
Gas Chromatography (GC) with Flame-Ionization Detection
Growing Crystals for X-ray Diffraction Analysis
Histological Sample Preparation for Light Microscopy
Internal Standards
Introduction to Catalysis
Introduction to Fluorescence Microscopy
Introduction to Light Microscopy
Introduction to Mass Spectrometry
Introduction to the Spectrophotometer
Language: The N400 in Semantic Incongruity
Lead Analysis of Soil Using Atomic Absorption Spectroscopy
Learning and Memory: The Remember-Know Task
MALDI-TOF Mass Spectrometry
Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
Metabolic Labeling
Method of Standard Addition
Motion-induced Blindness
Motor Maps
Nuclear Magnetic Resonance (NMR) Spectroscopy
Nutrients in Aquatic Ecosystems
Ophthalmoscopic Examination
Percussion
Pericardiocentesis
Peripheral Vascular Exam Using a Continuous Wave Doppler
Photometric Protein Determination
Physical Properties Of Minerals I: Crystals and Cleavage
Plasmid Purification
Protein Crystallization
Purifying Compounds by Recrystallization
Raman Spectroscopy for Chemical Analysis
Removal of Branched and Cyclic Compounds by Urea Adduction for Uk’37 Paleothermometry
Rodent Stereotaxic Surgery
Solid-Liquid Extraction
Sonication Extraction of Lipid Biomarkers from Sediment
Soxhlet Extraction of Lipid Biomarkers from Sediment
Spatial Cueing
Spectrophotometric Determination of an Equilibrium Constant
Surface Plasmon Resonance (SPR)
Tandem Mass Spectrometry
The Attentional Blink
The Rubber Hand Illusion
The Staircase Procedure for Finding a Perceptual
Threshold
• Turbidity and Total Solids in Surface Water
• Ultraviolet-Visible (UV-Vis) Spectroscopy
• Using Diffusion Tensor Imaging in Traumatic Brain Injury
• Using GIS to Investigate Urban Forestry
• Using TMS to Measure Motor Excitability During Action Observation
• Visual Attention: fMRI Investigation of Object-based Attentional Control
• X-ray Fluorescence (XRF)
• Yeast Maintenance
• fMRI: Functional Magnetic Resonance Imaging

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-LS.</th>
<th>LIFE SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-LS1.</td>
<td>From Molecules to Organisms: Structures and Processes</td>
</tr>
</tbody>
</table>

INDICATOR / PROFICIENCY LEVEL

INDICATOR

| HS-LS1. |

Students who demonstrate understanding can:

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

JoVE

• An Introduction to Caenorhabditis elegans
• An Introduction to Cell Death
• An Introduction to Cell Division
• An Introduction to Cellular and Molecular Neuroscience
• An Introduction to Developmental Genetics
• An Introduction to Molecular Developmental Biology
• An Introduction to Saccharomyces cerevisiae
• An Introduction to Transfection
• An Overview of Epigenetics
• An Overview of Gene Expression
• An Overview of Genetic Analysis
• An Overview of Genetic Engineering
• An Overview of Genetics and Disease
• Annexin V and Propidium Iodide Labeling
• Bacterial Transformation: Electroporation
• Bacterial Transformation: The Heat Shock Method
• Cell Cycle Analysis
• Chromatin Immunoprecipitation
• Community DNA Extraction from Bacterial Colonies
• Cytogenetics
• DNA Gel Electrophoresis
• DNA Ligation Reactions
• DNA Methylation Analysis
• Density Gradient Ultracentrifugation
• Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
• Detecting Reactive Oxygen Species
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS1-2.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.</td>
</tr>
</tbody>
</table>

JoVE

- An Introduction to Aging and Regeneration
- An Introduction to Behavioral Neuroscience
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Motility and Migration
- An Introduction to Cellular and Molecular Neuroscience
- An Introduction to Developmental Genetics
<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An Introduction to Developmental Neurobiology</td>
</tr>
<tr>
<td>• An Introduction to Learning and Memory</td>
</tr>
<tr>
<td>• An Introduction to Modeling Behavioral Disorders and Stress</td>
</tr>
<tr>
<td>• An Introduction to Molecular Developmental Biology</td>
</tr>
<tr>
<td>• An Introduction to Motor Control</td>
</tr>
<tr>
<td>• An Introduction to Organogenesis</td>
</tr>
<tr>
<td>• An Introduction to Reward and Addiction</td>
</tr>
<tr>
<td>• An Introduction to Stem Cell Biology</td>
</tr>
<tr>
<td>• An Introduction to the Chick: Gallus gallus domesticus</td>
</tr>
<tr>
<td>• An Introduction to the Zebrafish: Danio rerio</td>
</tr>
<tr>
<td>• Anesthesia Induction and Maintenance</td>
</tr>
<tr>
<td>• Anxiety Testing</td>
</tr>
<tr>
<td>• Approximate Number Sense Test</td>
</tr>
<tr>
<td>• Assessing Dexterity with Reaching Tasks</td>
</tr>
<tr>
<td>• Balance and Coordination Testing</td>
</tr>
<tr>
<td>• Basic Care Procedures</td>
</tr>
<tr>
<td>• Binocular Rivalry</td>
</tr>
<tr>
<td>• Blood Withdrawal I</td>
</tr>
<tr>
<td>• Blood Withdrawal II</td>
</tr>
<tr>
<td>• C. elegans Chemotaxis Assay</td>
</tr>
<tr>
<td>• C. elegans Development and Reproduction</td>
</tr>
<tr>
<td>• C. elegans Maintenance</td>
</tr>
<tr>
<td>• Calcium Imaging in Neurons</td>
</tr>
<tr>
<td>• Chick ex ovo Culture</td>
</tr>
<tr>
<td>• Co-Immunoprecipitation and Pull-Down Assays</td>
</tr>
<tr>
<td>• Color Afterimages</td>
</tr>
<tr>
<td>• Compound Administration I</td>
</tr>
<tr>
<td>• Compound Administration II</td>
</tr>
<tr>
<td>• Compound Administration III</td>
</tr>
<tr>
<td>• Compound Administration IV</td>
</tr>
<tr>
<td>• Considerations for Rodent Surgery</td>
</tr>
<tr>
<td>• Crowding</td>
</tr>
<tr>
<td>• Detecting Reactive Oxygen Species</td>
</tr>
<tr>
<td>• Development and Reproduction of the Laboratory Mouse</td>
</tr>
<tr>
<td>• Development of the Chick</td>
</tr>
<tr>
<td>• Diagnostic Necropsy and Tissue Harvest</td>
</tr>
<tr>
<td>• Dichotic Listening</td>
</tr>
<tr>
<td>• Drosophila Development and Reproduction</td>
</tr>
<tr>
<td>• Drosophila Larval IHC</td>
</tr>
<tr>
<td>• Embryonic Stem Cell Culture and Differentiation</td>
</tr>
<tr>
<td>• Explant Culture for Developmental Studies</td>
</tr>
<tr>
<td>• Explant Culture of Neural Tissue</td>
</tr>
<tr>
<td>• Expression Profiling with Microarrays</td>
</tr>
<tr>
<td>• Fate Mapping</td>
</tr>
<tr>
<td>• Finding Your Blind Spot and Perceptual Filling-in</td>
</tr>
<tr>
<td>• Fundamentals of Breeding and Weaning</td>
</tr>
<tr>
<td>• Genetic Engineering of Model Organisms</td>
</tr>
<tr>
<td>• Habituation: Studying Infants Before They Can Talk</td>
</tr>
<tr>
<td>• Histological Sample Preparation for Light Microscopy</td>
</tr>
</tbody>
</table>
Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

JoVE
- Abdominal Exam I: Inspection and Auscultation
- Abdominal Exam II: Percussion
- Abdominal Exam III: Palpation
- Abdominal Exam IV: Acute Abdominal Pain Assessment
• An Introduction to Cell Death
• An Introduction to Cell Division
• An Introduction to Cell Metabolism
• An Introduction to Cellular and Molecular Neuroscience
• An Introduction to Cognition
• An Introduction to Developmental Neurobiology
• An Introduction to Endocytosis and Exocytosis
• An Introduction to Learning and Memory
• An Introduction to Molecular Developmental Biology
• An Introduction to Reward and Addiction
• An Introduction to Stem Cell Biology
• Anesthesia Induction and Maintenance
• Ankle Exam
• Annexin V and Propidium Iodide Labeling
• Arterial Line Placement
• Assessing Dexterity with Reaching Tasks
• Auscultation
• Balance and Coordination Testing
• Basic Care Procedures
• Basic Life Support Part II: Airway/Breathing and Continued Cardiopulmonary Resuscitation
• Basic Life Support: Cardiopulmonary Resuscitation and Defibrillation
• Basic Mouse Care and Maintenance
• Blood Pressure Measurement
• Blood Withdrawal I
• Blood Withdrawal II
• C. elegans Development and Reproduction
• Calcium Imaging in Neurons
• Cardiac Exam I: Inspection and Palpation
• Cardiac Exam II: Auscultation
• Cardiac Exam III: Abnormal Heart Sounds
• Cell-surface Biotinylation Assay
• Central Venous Catheter Insertion: Femoral Vein with Ultrasound Guidance
• Central Venous Catheter Insertion: Internal Jugular with Ultrasound Guidance
• Central Venous Catheter Insertion: Subclavian Vein
• Compound Administration I
• Compound Administration II
• Compound Administration III
• Compound Administration IV
• Comprehensive Breast Exam
• Considerations for Rodent Surgery
• Cranial Nerves Exam I (I-VI)
• Cranial Nerves Exam II (VII-XII)
• Detecting Reactive Oxygen Species
• Diagnostic Necropsy and Tissue Harvest
• Ear Exam
• Elbow Exam
• Electro-encephalography (EEG)
<table>
<thead>
<tr>
<th>Title</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryonic Stem Cell Culture and Differentiation</td>
<td>Emergency Tube Thoracostomy (Chest Tube Placement)</td>
</tr>
<tr>
<td>Emergency Tube Thoracostomy (Chest Tube Placement)</td>
<td>Emergent Lateral Canthotomy and Inferior Catholysis</td>
</tr>
<tr>
<td>Emergent Lateral Canthotomy and Inferior Catholysis</td>
<td>Explant Culture of Neural Tissue</td>
</tr>
<tr>
<td>Explant Culture of Neural Tissue</td>
<td>Eye Exam</td>
</tr>
<tr>
<td>Eye Exam</td>
<td>FM Dyes in Vesicle Recycling</td>
</tr>
<tr>
<td>FM Dyes in Vesicle Recycling</td>
<td>Fear Conditioning</td>
</tr>
<tr>
<td>Fear Conditioning</td>
<td>Foot Exam</td>
</tr>
<tr>
<td>Foot Exam</td>
<td>General Approach to the Physical Exam</td>
</tr>
<tr>
<td>General Approach to the Physical Exam</td>
<td>Hand and Wrist Exam</td>
</tr>
<tr>
<td>Hand and Wrist Exam</td>
<td>Hip Exam</td>
</tr>
<tr>
<td>Hip Exam</td>
<td>Histological Staining of Neural Tissue</td>
</tr>
<tr>
<td>Histological Staining of Neural Tissue</td>
<td>In ovo Electroporation of Chicken Embryos</td>
</tr>
<tr>
<td>In ovo Electroporation of Chicken Embryos</td>
<td>Induced Pluripotency</td>
</tr>
<tr>
<td>Induced Pluripotency</td>
<td>Intra-articular Shoulder Injection for Reduction</td>
</tr>
<tr>
<td>Intra-articular Shoulder Injection for Reduction</td>
<td>Intraosseous Needle Placement</td>
</tr>
<tr>
<td>Intraosseous Needle Placement</td>
<td>Isolating Nucleic Acids from Yeast</td>
</tr>
<tr>
<td>Isolating Nucleic Acids from Yeast</td>
<td>Knee Exam</td>
</tr>
<tr>
<td>Knee Exam</td>
<td>Lower Back Exam</td>
</tr>
<tr>
<td>Lower Back Exam</td>
<td>Lymph Node Exam</td>
</tr>
<tr>
<td>Lymph Node Exam</td>
<td>Male Rectal Exam</td>
</tr>
<tr>
<td>Male Rectal Exam</td>
<td>Measuring Vital Signs</td>
</tr>
<tr>
<td>Measuring Vital Signs</td>
<td>Motor Exam I</td>
</tr>
<tr>
<td>Motor Exam I</td>
<td>Motor Exam II</td>
</tr>
<tr>
<td>Motor Exam II</td>
<td>Murine In Utero Electroporation</td>
</tr>
<tr>
<td>Murine In Utero Electroporation</td>
<td>Neck Exam</td>
</tr>
<tr>
<td>Neck Exam</td>
<td>Needle Thoracostomy (needle Decompression) for Temporizing Tension</td>
</tr>
<tr>
<td>Needle Thoracostomy (needle Decompression) for Temporizing Tension Pneumothorax Treatment</td>
<td>Nose, Sinuses, Oral Cavity and Pharynx Exam</td>
</tr>
<tr>
<td>Nose, Sinuses, Oral Cavity and Pharynx Exam</td>
<td>Observation and Inspection</td>
</tr>
<tr>
<td>Observation and Inspection</td>
<td>Ophthalmoscopic Examination</td>
</tr>
<tr>
<td>Ophthalmoscopic Examination</td>
<td>Palpation</td>
</tr>
<tr>
<td>Palpation</td>
<td>Patch Clamp Electrophysiology</td>
</tr>
<tr>
<td>Patch Clamp Electrophysiology</td>
<td>Pelvic Exam I: Assessment of the External Genitalia</td>
</tr>
<tr>
<td>Pelvic Exam I: Assessment of the External Genitalia</td>
<td>Pelvic Exam II: Speculum Exam</td>
</tr>
<tr>
<td>Pelvic Exam II: Speculum Exam</td>
<td>Pelvic Exam III: Bimanual and Rectovaginal Exam</td>
</tr>
<tr>
<td>Pelvic Exam III: Bimanual and Rectovaginal Exam</td>
<td>Percussion</td>
</tr>
<tr>
<td>Percussion</td>
<td>Percutaneous Cricothyrotomy (Seldinger Technique)</td>
</tr>
<tr>
<td>Percutaneous Cricothyrotomy (Seldinger Technique)</td>
<td>Pericardiocentesis</td>
</tr>
<tr>
<td>Pericardiocentesis</td>
<td>Peripheral Vascular Exam</td>
</tr>
<tr>
<td>Peripheral Vascular Exam</td>
<td>Peripheral Vascular Exam Using a Continuous Wave Doppler</td>
</tr>
<tr>
<td>Peripheral Vascular Exam Using a Continuous Wave Doppler</td>
<td>Peripheral Venous Cannulation</td>
</tr>
<tr>
<td>Peripheral Venous Cannulation</td>
<td>Physiological Correlates of Emotion Recognition</td>
</tr>
<tr>
<td>Physiological Correlates of Emotion Recognition</td>
<td>Proper Adjustment of Patient Attire during the Physical Exam</td>
</tr>
<tr>
<td>Proper Adjustment of Patient Attire during the Physical Exam</td>
<td>Reconstitution of Membrane Proteins</td>
</tr>
<tr>
<td>Reconstitution of Membrane Proteins</td>
<td>Respiratory Exam I: Inspection and Palpation</td>
</tr>
<tr>
<td>Respiratory Exam I: Inspection and Palpation</td>
<td>Respiratory Exam II: Percussion and Auscultation</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-LS1-4.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.</td>
<td></td>
</tr>
</tbody>
</table>

JoVE
- An Introduction to Aging and Regeneration
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Division
- An Introduction to Cell Motility and Migration
- An Introduction to Developmental Genetics
- An Introduction to Developmental Neurobiology
- An Introduction to Molecular Developmental Biology
- An Introduction to Organogenesis
- An Introduction to Saccharomyces cerevisiae
- An Introduction to Stem Cell Biology
- An Overview of Epigenetics
- An Overview of Gene Expression
- C. elegans Development and Reproduction
- Cell Cycle Analysis
- DNA Methylation Analysis
- Development and Reproduction of the Laboratory Mouse
- Development of the Chick
- Drosophila Larval IHC
- Embryonic Stem Cell Culture and Differentiation
- Explant Culture for Developmental Studies
- Explant Culture of Neural Tissue
- Expression Profiling with Microarrays
- Fate Mapping
- Gene Silencing with Morpholinos
- Genetic Engineering of Model Organisms
- Induced Pluripotency
- Live Cell Imaging of Mitosis
- Murine In Utero Electroporation
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS1-5.</th>
<th>Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cell Metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reconstitution of Membrane Proteins</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS1-6.</th>
<th>Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Caenorhabditis elegans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cell Death</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cell Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cell Metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cell Motility and Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Cellular and Molecular Neuroscience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Developmental Genetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Molecular Development Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Saccharomyces cerevisiae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Introduction to Transfection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Alkenone Biomarker Analysis for Paleothermometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Epigenetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Gene Expression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Genetic Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Genetic Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of Genetics and Disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• An Overview of bGDGT Biomarker Analysis for Paleoclimatology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Annexin V and Propidium Iodide Labeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bacterial Transformation: Electroporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bacterial Transformation: The Heat Shock Method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Biofuels: Producing Ethanol from Cellulosic Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C. elegans Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Carbon and Nitrogen Analysis of Environmental Samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cell Cycle Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cell-surface Biotinylation Assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chromatin Immunoprecipitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chromatography-Based Biomolecule Purification Methods</td>
</tr>
</tbody>
</table>
- Co-Immunoprecipitation and Pull-Down Assays
- Column Chromatography
- Community DNA Extraction from Bacterial Colonies
- Conversion of Fatty Acid Methyl Esters by Saponification for Uκ’37 Paleothermometry
- Cytogenetics
- DNA Gel Electrophoresis
- DNA Ligation Reactions
- DNA Methylation Analysis
- Density Gradient Ultracentrifugation
- Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
- Detecting Reactive Oxygen Species
- Development and Reproduction of the Laboratory Mouse
- Development of the Chick
- Dialysis: Diffusion Based Separation
- Drosophila Development and Reproduction
- Drosophila Larval IHC
- Drosophila melanogaster Embryo and Larva Harvesting and Preparation
- Electrophoretic Mobility Shift Assay (EMSA)
- Embryonic Stem Cell Culture and Differentiation
- Enzyme Assays and Kinetics
- Explant Culture for Developmental Studies
- Expression Profiling with Microarrays
- Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction
- FM Dyes in Vesicle Recycling
- Förster Resonance Energy Transfer (FRET)
- Gel Purification
- Gene Silencing with Morpholinos
- Genetic Crosses
- Genetic Engineering of Model Organisms
- Genetic Screens
- Genome Editing
- In ovo Electroporation of Chicken Embryos
- Induced Pluripotency
- Introduction to Catalysis
- Introduction to Mass Spectrometry
- Invasion Assay Using 3D Matrices
- Invertebrate Lifespan Quantification
- Ion-Exchange Chromatography
- Isolating Nucleic Acids from Yeast
- Live Cell Imaging of Mitosis
- MALDI-TOF Mass Spectrometry
- Metabolic Labeling
- Method of Standard Addition
- Molecular Cloning
- Mouse Genotyping
- Nutrients in Aquatic Ecosystems
Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.
<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-LS.</th>
<th>LIFE SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-LS2.</td>
<td>Ecosystems: Interactions, Energy, and Dynamics</td>
</tr>
</tbody>
</table>

INDICATOR / PROFICIENCY LEVEL

INDICATOR

- HS-LS2.2

Description

Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

JoVE

- Algae Enumeration via Culturable Methodology
- An Introduction to the Chick: Gallus gallus domesticus
- An Introduction to the Laboratory Mouse: Mus musculus
- An Introduction to the Zebrafish: Danio rerio
- Analysis of Earthworm Populations in Soil
- Aseptic Technique in Environmental Science
- Bacterial Growth Curve Analysis and its Environmental Applications
- Bacterial Transformation: Electroporation
- Bacterial Transformation: The Heat Shock Method
- Basic Mouse Care and Maintenance
- C. elegans Maintenance
- Culturing and Enumerating Bacteria from Soil Samples
- Detection of Bacteriophages in Environmental Samples
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Dissolved Oxygen in Surface Water
- Drosophila Maintenance
- Drosophila melanogaster Embryo and Larva Harvesting and Preparation
- Filamentous Fungi
- Introduction to Mass Spectrometry
- Isolation of Fecal Bacteria from Water Samples by Filtration
- Lead Analysis of Soil Using Atomic Absorption Spectroscopy
- Measuring Tropospheric Ozone
- Nutrients in Aquatic Ecosystems
- Passaging Cells
- Plasmid Purification
- Quantifying Environmental Microorganisms and Viruses Using qPCR
- Tree Identification: How To Use a Dichotomous Key
- Tree Survey: Point-Centered Quarter Sampling Method
- Turbidity and Total Solids in Surface Water
- Water Quality Analysis via Indicator Organisms
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS2-3.</th>
<th>Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Algae Enumeration via Culturable Methodology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Analysis of Earthworm Populations in Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bacterial Growth Curve Analysis and its Environmental Applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Carbon and Nitrogen Analysis of Environmental Samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dissolved Oxygen in Surface Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Filamentous Fungi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fundamentals of Breeding and Weaning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nutrients in Aquatic Ecosystems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Using GIS to Investigate Urban Forestry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS2-4.</th>
<th>Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Algae Enumeration via Culturable Methodology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- An Overview of Alkenone Biomarker Analysis for Paleothermometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- An Overview of bGDGT Biomarker Analysis for Paleoclimatology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Analysis of Earthworm Populations in Soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bacterial Growth Curve Analysis and its Environmental Applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Carbon and Nitrogen Analysis of Environmental Samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Conversion of Fatty Acid Methyl Esters by Saponification for Uk’37 Paleothermometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Culturing and Enumerating Bacteria from Soil Samples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dissolved Oxygen in Surface Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Filamentous Fungi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fundamentals of Breeding and Weaning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Metabolic Labeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nutrients in Aquatic Ecosystems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Purification of a Total Lipid Extract with Column Chromatography</td>
</tr>
</tbody>
</table>
INDICATOR HS-LS2-5.
Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

JoVE
- An Introduction to Cell Metabolism
- Biofuels: Producing Ethanol from Cellulosic Material
- Detecting Reactive Oxygen Species
- The ATP Bioluminescence Assay

INDICATOR HS-LS2-7.
Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

JoVE
- Biofuels: Producing Ethanol from Cellulosic Material
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Measuring Tropospheric Ozone
- Proton Exchange Membrane Fuel Cells
- Self-report vs. Behavioral Measures of Recycling
- Using GIS to Investigate Urban Forestry

STANDARD KS.HS-LS. LIFE SCIENCE

BENCHMARK HS-LS3. Heredity: Inheritance and Variation of Traits

INDICATOR / PROFICIENCY LEVEL

INDICATOR HS-LS3-1.
Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

JoVE
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Death
- An Introduction to Cell Division
- An Introduction to Cellular and Molecular Neuroscience
- An Introduction to Developmental Genetics
- An Introduction to Drosophila melanogaster
- An Introduction to Molecular Developmental Biology
- An Introduction to Saccharomyces cerevisiae
- An Introduction to Transfection
- An Introduction to the Zebrafish: Danio rerio
- An Overview of Epigenetics
- An Overview of Gene Expression
• An Overview of Genetic Analysis
• An Overview of Genetic Engineering
• An Overview of Genetics and Disease
• Annexin V and Propidium Iodide Labeling
• Bacterial Transformation: Electroporation
• Bacterial Transformation: The Heat Shock Method
• C. elegans Development and Reproduction
• Cell Cycle Analysis
• Chromatin Immunoprecipitation
• Community DNA Extraction from Bacterial Colonies
• Cytogenetics
• DNA Gel Electrophoresis
• DNA Ligation Reactions
• DNA Methylation Analysis
• Density Gradient Ultracentrifugation
• Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
• Development and Reproduction of the Laboratory Mouse
• Drosophila melanogaster Embryo and Larva Harvesting and Preparation
• Electrophoretic Mobility Shift Assay (EMSA)
• Embryonic Stem Cell Culture and Differentiation
• Enzyme Assays and Kinetics
• Explant Culture for Developmental Studies
• Expression Profiling with Microarrays
• Förster Resonance Energy Transfer (FRET)
• Gel Purification
• Gene Silencing with Morpholinos
• Genetic Crosses
• Genetic Engineering of Model Organisms
• Genetic Screens
• Genome Editing
• In ovo Electroporation of Chicken Embryos
• Induced Pluripotency
• Isolating Nucleic Acids from Yeast
• Live Cell Imaging of Mitosis
• Molecular Cloning
• Mouse Genotyping
• PCR: The Polymerase Chain Reaction
• Photometric Protein Determination
• Plasmid Purification
• Protein Crystallization
• Quantifying Environmental Microorganisms and Viruses Using qPCR
• RNA Analysis of Environmental Samples Using RT-PCR
• RNA-Seq
• Recombining and Gene Targeting
• Restriction Enzyme Digests
• SNP Genotyping
• Testing For Genetically Modified Foods
• The TUNEL Assay
• Two-Dimensional Gel Electrophoresis
• Whole-Mount In Situ Hybridization
• Yeast Maintenance
• Yeast Transformation and Cloning
• Zebrafish Breeding and Embryo Handling

INDICATOR	HS-LS3-2.
Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

JoVE
• An Introduction to Aging and Regeneration
• An Introduction to Caenorhabditis elegans
• An Introduction to Cell Death
• An Introduction to Cell Division
• An Introduction to Developmental Genetics
• An Introduction to Drosophila melanogaster
• An Introduction to Modeling Behavioral Disorders and Stress
• An Introduction to Saccharomyces cerevisiae
• An Introduction to Transfection
• An Introduction to the Zebrafish: Danio rerio
• An Overview of Epigenetics
• An Overview of Gene Expression
• An Overview of Genetic Analysis
• An Overview of Genetics and Disease
• C. elegans Development and Reproduction
• Drosophila Development and Reproduction
• Genetic Crosses
• Genetic Engineering of Model Organisms
• Genetic Screens
• Isolating Nucleic Acids from Yeast
• Passaging Cells
• Recombineering and Gene Targeting
• SNP Genotyping
• The ELISA Method
• The TUNEL Assay
• Yeast Reproduction
• Zebrafish Maintenance and Husbandry

INDICATOR	HS-LS3-3.
Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

JoVE
• An Introduction to Developmental Genetics
• An Overview of Epigenetics
• An Overview of Genetic Analysis
• An Overview of Genetics and Disease
• DNA Methylation Analysis
• Fundamentals of Breeding and Weaning
<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-LS.</th>
<th>LIFE SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-LS4.</td>
<td>Biological Evolution: Unity and Diversity</td>
</tr>
</tbody>
</table>

INDICATOR / PROFICIENCY LEVEL

INDICATOR

| HS-LS4-1 | Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. |

JoVE
- An Introduction to Caenorhabditis elegans
- An Introduction to Drosophila melanogaster
- An Introduction to the Chick: Gallus gallus domesticus
- An Introduction to the Laboratory Mouse: Mus musculus
- An Introduction to the Zebrafish: Danio rerio
- An Overview of Genetic Analysis
- Drosophila Development and Reproduction
- Drosophila melanogaster Embryo and Larva Harvesting and Preparation
- High-Performance Liquid Chromatography (HPLC)

| HS-LS4-2 | Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. |

JoVE
- An Introduction to the Chick: Gallus gallus domesticus
- An Overview of Genetic Analysis

| HS-LS4-3 | Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. |

JoVE
- An Overview of Genetic Analysis

| HS-LS4-4 | Construct an explanation based on evidence for how natural selection leads to adaptation of populations. |

JoVE
- An Overview of Genetic Analysis

| HS-LS4-5 | Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the |
emergence of new species over time, and (3) the extinction of other species.

JoVE
- Algae Enumeration via Culturable Methodology
- An Introduction to the Chick: Gallus gallus domesticus
- An Introduction to the Laboratory Mouse: Mus musculus
- An Introduction to the Zebrafish: Danio rerio
- Analysis of Earthworm Populations in Soil
- Aseptic Technique in Environmental Science
- Bacterial Growth Curve Analysis and its Environmental Applications
- Bacterial Transformation: Electroporation
- Bacterial Transformation: The Heat Shock Method
- Basic Mouse Care and Maintenance
- C. elegans Maintenance
- Culturing and Enumerating Bacteria from Soil Samples
- Detection of Bacteriophages in Environmental Samples
- Dissolved Oxygen in Surface Water
- Drosophila Maintenance
- Drosophila melanogaster Embryo and Larva Harvesting and Preparation
- Filamentous Fungi
- Isolation of Fecal Bacteria from Water Samples by Filtration
- Passaging Cells
- Plasmid Purification
- Quantifying Environmental Microorganisms and Viruses Using qPCR
- Yeast Maintenance
- Yeast Reproduction

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-LS4-6.</th>
<th>Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.</th>
</tr>
</thead>
</table>

JoVE
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Lead Analysis of Soil Using Atomic Absorption Spectroscopy
- Self-report vs. Behavioral Measures of Recycling

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-ESS.</th>
<th>EARTH AND SPACE SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-ESS1.</td>
<td>Earth’s Place in the Universe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICATOR / PROFICIENCY LEVEL</th>
<th>Students who demonstrate understanding can:</th>
</tr>
</thead>
</table>

<p>| INDICATOR | HS-ESS1-1. | Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation. |</p>
<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.HS-ESS.</th>
<th>EARTH AND SPACE SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-ESS2.</td>
<td>Earth’s Systems</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td></td>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-ESS2-5.</td>
<td>Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-ESS2-6.</td>
<td>Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.</td>
</tr>
</tbody>
</table>

INDICATOR HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

JoVE
- Determining Spatial Orientation of Rock Layers with the Brunton Compass
- Igneous Intrusive Rock
- Igneous Volcanic Rock
- Making a Geologic Cross Section
- Using Topographic Maps to Generate Topographic Profiles

INDICATOR HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

JoVE
- Igneous Intrusive Rock
- Igneous Volcanic Rock
- Making a Geologic Cross Section
- Turbidity and Total Solids in Surface Water
- Using Topographic Maps to Generate Topographic Profiles

INDICATOR HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.

JoVE
- Determination of Moisture Content in Soil
- Dissolved Oxygen in Surface Water
- Nutrients in Aquatic Ecosystems
- Proton Exchange Membrane Fuel Cells
- Turbidity and Total Solids in Surface Water
- Water Quality Analysis via Indicator Organisms

INDICATOR HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

JoVE
- An Overview of Alkenone Biomarker Analysis for Paleothermometry
<table>
<thead>
<tr>
<th>Indicator / Proficiency Level</th>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATOR</td>
<td>HS-ESS2-7.</td>
<td>Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth.</td>
</tr>
</tbody>
</table>

JoVE
- An Overview of Alkenone Biomarker Analysis for Paleothermometry
- An Overview of bGDGT Biomarker Analysis for Paleoclimatology
- Conversion of Fatty Acid Methyl Esters by Saponification for Uk’37 Paleothermometry
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction
- Purification of a Total Lipid Extract with Column Chromatography
- Removal of Branched and Cyclic Compounds by Urea Adduction for Uk’37 Paleothermometry
- Sonication Extraction of Lipid Biomarkers from Sediment
- Soxhlet Extraction of Lipid Biomarkers from Sediment
- Using GIS to Investigate Urban Forestry

STANDARD | **KS.HS-ESS.** | **EARTH AND SPACE SCIENCE** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>HS-ESS3.</td>
<td>Earth and Human Activity</td>
</tr>
</tbody>
</table>

INDICATOR | **HS-ESS3-1.** | Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. |

JoVE
- Biofuels: Producing Ethanol from Cellulosic Material
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Dissolved Oxygen in Surface Water
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-ESS3-2</th>
<th>Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JoVE</td>
</tr>
</tbody>
</table>
| | | • Biofuels: Producing Ethanol from Cellulosic Material
• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
• Fractional Distillation
• Igneous Intrusive Rock
• Proton Exchange Membrane Fuel Cells
• Raman Spectroscopy for Chemical Analysis |
| INDICATOR | HS-ESS3-3 | Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. |
| | | **JoVE** |
| | | • Biofuels: Producing Ethanol from Cellulosic Material
• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
• Electrophoretic Mobility Shift Assay (EMSA)
• Lead Analysis of Soil Using Atomic Absorption Spectroscopy
• Measuring Tropospheric Ozone
• Proton Exchange Membrane Fuel Cells
• Self-report vs. Behavioral Measures of Recycling
• Tree Identification: How To Use a Dichotomous Key
• Tree Survey: Point-Centered Quarter Sampling Method
• Using GIS to Investigate Urban Forestry |
| INDICATOR | HS-ESS3-4 | Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. |
| | | **JoVE** |
| | | • Bacterial Growth Curve Analysis and its Environmental Applications
• Biofuels: Producing Ethanol from Cellulosic Material
• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
• Measuring Tropospheric Ozone |
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-ESS3-5.</th>
<th>Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JoVE</td>
<td>Biofuels: Producing Ethanol from Cellulosic Material</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>HS-ESS3-6.</td>
<td>Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.</td>
</tr>
<tr>
<td></td>
<td>JoVE</td>
<td>Biofuels: Producing Ethanol from Cellulosic Material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolved Oxygen in Surface Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Mass Spectrometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead Analysis of Soil Using Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making a Geologic Cross Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measuring Tropospheric Ozone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nutrients in Aquatic Ecosystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proton Exchange Membrane Fuel Cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree Identification: How To Use a Dichotomous Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree Survey: Point-Centered Quarter Sampling Method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turbidity and Total Solids in Surface Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using GIS to Investigate Urban Forestry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water Quality Analysis via Indicator Organisms</td>
</tr>
</tbody>
</table>

STANDARD	KS.HS-ETS.	ENGINEERING DESIGN
BENCHMARK | HS-ETS1. | Engineering Design |
INDICATOR / PROFICIENCY LEVEL | | Students who demonstrate understanding can: |
INDICATOR | HS-ETS1-1. | Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. |
<p>| | JoVE | Biofuels: Producing Ethanol from Cellulosic Material |
| | | Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy |
| | | Dissolved Oxygen in Surface Water |
| | | Lead Analysis of Soil Using Atomic Absorption Spectroscopy |
| | | Measuring Tropospheric Ozone |
| | | Nutrients in Aquatic Ecosystem |
| | | Proton Exchange Membrane Fuel Cells |
| | | Turbidity and Total Solids in Surface Water |</p>
<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>HS-ETS1.3.</th>
<th>Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.</th>
</tr>
</thead>
</table>

JoVE
- Biofuels: Producing Ethanol from Cellulosic Material
- Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
- Measuring Tropospheric Ozone
- Proton Exchange Membrane Fuel Cells
- Using GIS to Investigate Urban Forestry

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.RST.9-10.</th>
<th>Reading Standards for Literacy in Science and Technical Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>Craft and Structure</td>
<td></td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>RST.9-10.4.</td>
<td>Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.</td>
</tr>
</tbody>
</table>

JoVE
- Abdominal Exam I: Inspection and Auscultation
- Abdominal Exam II: Percussion
- Abdominal Exam III: Palpation
- Abdominal Exam IV: Acute Abdominal Pain Assessment
- Algae Enumeration via Culturable Methodology
- An Introduction to Aging and Regeneration
- An Introduction to Behavioral Neuroscience
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Death
- An Introduction to Cell Division
- An Introduction to Cell Metabolism
- An Introduction to Cell Motility and Migration
- An Introduction to Cellular and Molecular Neuroscience
- An Introduction to Cognition
- An Introduction to Developmental Genetics
- An Introduction to Developmental Neurobiology
- An Introduction to Drosophila melanogaster
- An Introduction to Endocytosis and Exocytosis
- An Introduction to Learning and Memory
- An Introduction to Modeling Behavioral Disorders and Stress
- An Introduction to Molecular Developmental Biology
- An Introduction to Motor Control
- An Introduction to Neuroanatomy
- An Introduction to Neurophysiology
- An Introduction to Organogenesis
• An Introduction to Reward and Addiction
• An Introduction to Saccharomyces cerevisiae
• An Introduction to Stem Cell Biology
• An Introduction to Transfection
• An Introduction to Working in the Hood
• An Introduction to the Centrifuge
• An Introduction to the Chick: Gallus gallus domesticus
• An Introduction to the Laboratory Mouse: Mus musculus
• An Introduction to the Micropipettor
• An Introduction to the Zebrafish: Danio rerio
• An Overview of Alkenone Biomarker Analysis for Paleothermometry
• An Overview of Epigenetics
• An Overview of Gene Expression
• An Overview of Genetic Analysis
• An Overview of Genetic Engineering
• An Overview of Genetics and Disease
• An Overview of bGDGT Biomarker Analysis for Paleoclimatology
• Analysis of Earthworm Populations in Soil
• Anesthesia Induction and Maintenance
• Ankle Exam
• Annexin V and Propidium Iodide Labeling
• Anterograde Amnesia
• Anxiety Testing
• Approximate Number Sense Test
• Are You Smart or Hardworking? How Praise Influences Children’s Motivation
• Arterial Line Placement
• Aseptic Technique in Environmental Science
• Assembly of a Reflux System for Heated Chemical Reactions
• Assessing Dexterity with Reaching Tasks
• Auscultation
• Bacterial Growth Curve Analysis and its Environmental Applications
• Bacterial Transformation: Electroporation
• Bacterial Transformation: The Heat Shock Method
• Balance and Coordination Testing
• Basic Care Procedures
• Basic Chick Care and Maintenance
• Basic Life Support Part II: Airway/Breathing and Continued Cardiopulmonary Resuscitation
• Basic Life Support: Cardiopulmonary Resuscitation and Defibrillation
• Basic Mouse Care and Maintenance
• Binocular Rivalry
• Biofuels: Producing Ethanol from Cellulosic Material
• Blood Pressure Measurement
• Blood Withdrawal I
• Blood Withdrawal II
• Degassing Liquids with Freeze-Pump-Thaw Cycling
• Density Gradient Ultracentrifugation
• Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
• Detecting Reactive Oxygen Species
• Detection of Bacteriophages in Environmental Samples
• Determination of NOx in Automobile Exhaust Using UV-VIS Spectroscopy
• Determination of Moisture Content in Soil
• Determining Rate Laws and the Order of Reaction
• Determining Spatial Orientation of Rock Layers with the Brunton Compass
• Determining the Density of a Solid and Liquid
• Determining the Empirical Formula
• Determining the Mass Percent Composition in an Aqueous Solution
• Determining the Solubility Rules of Ionic Compounds
• Development and Reproduction of the Laboratory Mouse
• Development of the Chick
• Diagnostic Necropsy and Tissue Harvest
• Dialysis: Diffusion Based Separation
• Dichotic Listening
• Dissolved Oxygen in Surface Water
• Drosophila Development and Reproduction
• Drosophila Larval IHC
• Drosophila Maintenance
• Drosophila melanogaster Embryo and Larva Harvesting and Preparation
• Ear Exam
• Elbow Exam
• Electroencephalography (EEG)
• Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat
• Electrophoretic Mobility Shift Assay (EMSA)
• Embryonic Stem Cell Culture and Differentiation
• Emergency Tube Thoracostomy (Chest Tube Placement)
• Emergent Lateral Canthotomy and Inferior Catholysis
• Enzyme Assays and Kinetics
• Ethics in Psychology Research
• Event-related Potentials and the Oddball Task
• Executive Function and the Dimensional Change Card Sort Task
• Executive Function in Autism Spectrum Disorder
• Experimentation using a Confederate
• Explant Culture for Developmental Studies
• Explant Culture of Neural Tissue
• Expression Profiling with Microarrays
• Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction
• Eye Exam
• Eye Tracking in Cognitive Experiments
• FM Dyes in Vesicle Recycling
• Fate Mapping
• Fear Conditioning
• Filamentous Fungi
• Finding Your Blind Spot and Perceptual Filling-in
• Foot Exam
• Fractional Distillation
• Freezing-Point Depression to Determine an Unknown Compound
• From Theory to Design: The Role of Creativity in Designing Experiments
• Fundamentals of Breeding and Weaning
• Förster Resonance Energy Transfer (FRET)
• Gas Chromatography (GC) with Flame-Ionization Detection
• Gel Purification
• Gene Silencing with Morpholinos
• General Approach to the Physical Exam
• Genetic Crosses
• Genetic Engineering of Model Organisms
• Genetic Screens
• Genome Editing
• Gram Staining of Bacteria from Environmental Sources
• Growing Crystals for X-ray Diffraction Analysis
• Habituation: Studying Infants Before They Can Talk
• Hand and Wrist Exam
• High-Performance Liquid Chromatography (HPLC)
• Hip Exam
• Histological Sample Preparation for Light Microscopy
• Histological Staining of Neural Tissue
• How Children Solve Problems Using Causal Reasoning
• Ideal Gas Law
• Igneous Intrusive Rock
• Igneous Volcanic Rock
• In ovo Electroporation of Chicken Embryos
• Inattentional Blindness
• Incidental Encoding
• Induced Pluripotency
• Internal Standards
• Intra-articular Shoulder Injection for Reduction Following Anterior Shoulder Dislocation
• Intraosseus Needle Placement
• Introducing Experimental Agents into the Mouse
• Introduction to Catalysis
• Introduction to Fluorescence Microscopy
• Introduction to Light Microscopy
• Introduction to Mass Spectrometry
• Introduction to Serological Pipettes and Pipettors
• Introduction to Titration
• Introduction to the Bunsen Burner
• Introduction to the Microplate Reader
• Introduction to the Spectrophotometer
• Invasion Assay Using 3D Matrices
• Invertebrate Lifespan Quantification
• Ion-Exchange Chromatography
• Isolating Nucleic Acids from Yeast
• Isolation of Fecal Bacteria from Water Samples by Filtration
• Just-noticeable Differences
• Knee Exam
• Language: The N400 in Semantic Incongruity
• Le Châtelier’s Principle
• Lead Analysis of Soil Using Atomic Absorption Spectroscopy
• Learning and Memory: The Remember-Know Task
• Live Cell Imaging of Mitosis
• Lower Back Exam
• Lymph Node Exam
• MALDI-TOF Mass Spectrometry
• Making Solutions in the Laboratory
• Making a Geologic Cross Section
• Male Rectal Exam
• Manipulating an Independent Variable through Embodiment
• Measuring Children’s Trust in Testimony
• Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
• Measuring Mass in the Laboratory
• Measuring Reaction Time and Donders’ Method of Subtraction
• Measuring Tropospheric Ozone
• Measuring Verbal Working Memory Span
• Measuring Vital Signs
• Memory Development: Demonstrating How Repeated Questioning Leads to False Memories
• Mental Rotation
• Metabolic Labeling
• Metacognitive Development: How Children Estimate Their Memory
• Method of Standard Addition
• Modeling Social Stress
• Molecular Cloning
• Motion-induced Blindness
• Motor Exam I
• Motor Exam II
• Motor Learning in Mirror Drawing
• Motor Maps
• Mouse Genotyping
• Multiple Object Tracking
• Murine In Utero Electroporation
• Mutual Exclusivity: How Children Learn the Meanings of Words
• Neck Exam
• Needle Thoracostomy (needle Decompression) for Temporizing Tension Pneumothorax Treatment
• Neuronal Transfection Methods
• Nose, Sinuses, Oral Cavity and Pharynx Exam
• Nuclear Magnetic Resonance (NMR) Spectroscopy
• Numerical Cognition: More or Less
• Nutrients in Aquatic Ecosystems
• Object Substitution Masking
• Observation and Inspection
• Observational Research
• Ophthalmoscopic Examination
• PCR: The Polymerase Chain Reaction
• Palpation
• Passaging Cells
• Patch Clamp Electrophysiology
• Pelvic Exam I: Assessment of the External Genitalia
• Pelvic Exam II: Speculum Exam
• Pelvic Exam III: Bimanual and Rectovaginal Exam
• Percussion
• Percutaneous Cricothyrotomy (Seldinger Technique)
• Performing 1D Thin Layer Chromatography
• Pericardiocentesis
• Peripheral Vascular Exam
• Peripheral Vascular Exam Using a Continuous Wave Doppler
• Peripheral Venous Cannulation
• Perspectives on Sensation and Perception
• Photometric Protein Determination
• Physical Properties Of Minerals I: Crystals and Cleavage
• Physical Properties Of Minerals II: Polymineralic Analysis
• Physiological Correlates of Emotion Recognition
• Piaget’s Conservation Task and the Influence of Task Demands
• Pilot Testing
• Placebos in Research
• Plasmid Purification
• Positive Reinforcement Studies
• Preparing Anhydrous Reagents and Equipment
• Primary Neuronal Cultures
• Proper Adjustment of Patient Attire during the Physical Exam
• Prospect Theory
• Protein Crystallization
• Proton Exchange Membrane Fuel Cells
• Purification of a Total Lipid Extract with Column Chromatography
• Purifying Compounds by Recrystallization
• Quantifying Environmental Microorganisms and Viruses Using qPCR
• RNA Analysis of Environmental Samples Using RT-PCR
• RNA-Seq
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNAi in C. elegans</td>
</tr>
<tr>
<td>Raman Spectroscopy for Chemical Analysis</td>
</tr>
<tr>
<td>Realism in Experimentation</td>
</tr>
<tr>
<td>Recombineering and Gene Targeting</td>
</tr>
<tr>
<td>Reconstitution of Membrane Proteins</td>
</tr>
<tr>
<td>Regulating Temperature in the Lab: Applying Heat</td>
</tr>
<tr>
<td>Regulating Temperature in the Lab: Preserving Samples Using Cold</td>
</tr>
<tr>
<td>Reliability in Psychology Experiments</td>
</tr>
<tr>
<td>Removal of Branched and Cyclic Compounds by Urea Adduction for Uk'37 Paleothermometry</td>
</tr>
<tr>
<td>Respiratory Exam I: Inspection and Palpation</td>
</tr>
<tr>
<td>Respiratory Exam II: Percussion and Auscultation</td>
</tr>
<tr>
<td>Restriction Enzyme Digests</td>
</tr>
<tr>
<td>Rodent Handling and Restraint Techniques</td>
</tr>
<tr>
<td>Rodent Identification I</td>
</tr>
<tr>
<td>Rodent Identification II</td>
</tr>
<tr>
<td>Rodent Stereotaxic Surgery</td>
</tr>
<tr>
<td>Rotary Evaporation to Remove Solvent</td>
</tr>
<tr>
<td>SNP Genotyping</td>
</tr>
<tr>
<td>Sample Preparation for Analytical Preparation</td>
</tr>
<tr>
<td>Scanning Electron Microscopy (SEM)</td>
</tr>
<tr>
<td>Schlenk Lines Transfer of Solvents</td>
</tr>
<tr>
<td>Self-administration Studies</td>
</tr>
<tr>
<td>Self-report vs. Behavioral Measures of Recycling</td>
</tr>
<tr>
<td>Sensory Exam</td>
</tr>
<tr>
<td>Separating Protein with SDS-PAGE</td>
</tr>
<tr>
<td>Separation of Mixtures via Precipitation</td>
</tr>
<tr>
<td>Shoulder Exam I</td>
</tr>
<tr>
<td>Shoulder Exam II</td>
</tr>
<tr>
<td>Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium</td>
</tr>
<tr>
<td>Solid-Liquid Extraction</td>
</tr>
<tr>
<td>Solutions and Concentrations</td>
</tr>
<tr>
<td>Sonication Extraction of Lipid Biomarkers from Sediment</td>
</tr>
<tr>
<td>Soxhlet Extraction of Lipid Biomarkers from Sediment</td>
</tr>
<tr>
<td>Spatial Cueing</td>
</tr>
<tr>
<td>Spatial Memory Testing Using Mazes</td>
</tr>
<tr>
<td>Spectrophotometric Determination of an Equilibrium Constant</td>
</tr>
<tr>
<td>Sterile Tissue Harvest</td>
</tr>
<tr>
<td>Surface Plasmon Resonance (SPR)</td>
</tr>
<tr>
<td>Surgical Cricothyrotomy</td>
</tr>
<tr>
<td>Tandem Mass Spectrometry</td>
</tr>
<tr>
<td>Testing For Genetically Modified Foods</td>
</tr>
<tr>
<td>The ATP Bioluminescence Assay</td>
</tr>
<tr>
<td>The Ames Room</td>
</tr>
<tr>
<td>The Attentional Blink</td>
</tr>
<tr>
<td>The Costs and Benefits of Natural Pedagogy</td>
</tr>
<tr>
<td>The ELISA Method</td>
</tr>
<tr>
<td>The Factorial Experiment</td>
</tr>
<tr>
<td>The Ideal Gas Law</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>The McGurk Effect</td>
</tr>
<tr>
<td>The Multi-group Experiment</td>
</tr>
<tr>
<td>The Rouge Test: Searching for a Sense of Self</td>
</tr>
<tr>
<td>The Simple Experiment: Two-group Design</td>
</tr>
<tr>
<td>The Staircase Procedure for Finding a Perceptual Threshold</td>
</tr>
<tr>
<td>The Transwell Migration Assay</td>
</tr>
<tr>
<td>Thyroid Exam</td>
</tr>
<tr>
<td>Transplantation Studies</td>
</tr>
<tr>
<td>Tree Survey: Point-Centered Quarter Sampling Method</td>
</tr>
<tr>
<td>Two-Dimensional Gel Electrophoresis</td>
</tr>
<tr>
<td>Understanding Concentration and Measuring Volumes</td>
</tr>
<tr>
<td>Using Diffusion Tensor Imaging in Traumatic Brain Injury</td>
</tr>
<tr>
<td>Using TMS to Measure Motor Excitability During Action Observation</td>
</tr>
<tr>
<td>Using Your Head: Measuring Infants' Rational Imitation of Actions</td>
</tr>
<tr>
<td>Verbal Priming</td>
</tr>
<tr>
<td>Visual Search for Features and Conjunctions</td>
</tr>
<tr>
<td>Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy</td>
</tr>
<tr>
<td>Whole-Mount In Situ Hybridization</td>
</tr>
<tr>
<td>X-ray Fluorescence (XRF)</td>
</tr>
<tr>
<td>Yeast Reproduction</td>
</tr>
<tr>
<td>Yeast Transformation and Cloning</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>- Zebrafish Maintenance and Husbandry</td>
</tr>
<tr>
<td>- Zebrafish Microinjection Techniques</td>
</tr>
<tr>
<td>- Zebrafish Reproduction and Development</td>
</tr>
<tr>
<td>- fMRI: Functional Magnetic Resonance Imaging</td>
</tr>
</tbody>
</table>

Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).

JoVE
- Abdominal Exam I: Inspection and Auscultation
- Abdominal Exam II: Percussion
- Abdominal Exam III: Palpation
- Abdominal Exam IV: Acute Abdominal Pain Assessment
- Algae Enumeration via Culturable Methodology
- An Introduction to Aging and Regeneration
- An Introduction to Behavioral Neuroscience
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Death
- An Introduction to Cell Division
- An Introduction to Cell Metabolism
- An Introduction to Cell Motility and Migration
- An Introduction to Cellular and Molecular Neuroscience
- An Introduction to Cognition
- An Introduction to Developmental Genetics
- An Introduction to Developmental Neurobiology
- An Introduction to Drosophila melanogaster
- An Introduction to Endocytosis and Exocytosis
- An Introduction to Learning and Memory
- An Introduction to Modeling Behavioral Disorders and Stress
- An Introduction to Molecular Developmental Biology
- An Introduction to Motor Control
- An Introduction to Neuroanatomy
- An Introduction to Neurophysiology
- An Introduction to Organogenesis
- An Introduction to Reward and Addiction
- An Introduction to Saccharomyces cerevisiae
- An Introduction to Stem Cell Biology
- An Introduction to Transfection
- An Introduction to Working in the Hood
- An Introduction to the Centrifuge
- An Introduction to the Chick: Gallus gallus domesticus
- An Introduction to the Laboratory Mouse: Mus musculus
- An Introduction to the Micropipettor
- An Introduction to the Zebrafish: Danio rerio
- An Overview of Alkenone Biomarker Analysis for Paleothermometry
- An Overview of Epigenetics
- An Overview of Gene Expression
<table>
<thead>
<tr>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• An Overview of Genetic Analysis</td>
</tr>
<tr>
<td>• An Overview of Genetic Engineering</td>
</tr>
<tr>
<td>• An Overview of Genetics and Disease</td>
</tr>
<tr>
<td>• An Overview of bGDGT Biomarker Analysis for Paleoclimatology</td>
</tr>
<tr>
<td>• Analysis of Earthworm Populations in Soil</td>
</tr>
<tr>
<td>• Anesthesia Induction and Maintenance</td>
</tr>
<tr>
<td>• Ankle Exam</td>
</tr>
<tr>
<td>• Annexin V and Propidium Iodide Labeling</td>
</tr>
<tr>
<td>• Anterograde Amnesia</td>
</tr>
<tr>
<td>• Anxiety Testing</td>
</tr>
<tr>
<td>• Approximate Number Sense Test</td>
</tr>
<tr>
<td>• Are You Smart or Hardworking? How Praise Influences Children's Motivation</td>
</tr>
<tr>
<td>• Arterial Line Placement</td>
</tr>
<tr>
<td>• Aseptic Technique in Environmental Science</td>
</tr>
<tr>
<td>• Assembly of a Reflux System for Heated Chemical Reactions</td>
</tr>
<tr>
<td>• Assessing Dexterity with Reaching Tasks</td>
</tr>
<tr>
<td>• Auscultation</td>
</tr>
<tr>
<td>• Bacterial Growth Curve Analysis and its Environmental Applications</td>
</tr>
<tr>
<td>• Bacterial Transformation: Electroporation</td>
</tr>
<tr>
<td>• Bacterial Transformation: The Heat Shock Method</td>
</tr>
<tr>
<td>• Balance and Coordination Testing</td>
</tr>
<tr>
<td>• Basic Care Procedures</td>
</tr>
<tr>
<td>• Basic Chick Care and Maintenance</td>
</tr>
<tr>
<td>• Basic Life Support Part II: Airway/Breathing and Continued Cardiopulmonary Resuscitation</td>
</tr>
<tr>
<td>• Basic Life Support: Cardiopulmonary Resuscitation and Defibrillation</td>
</tr>
<tr>
<td>• Basic Mouse Care and Maintenance</td>
</tr>
<tr>
<td>• Binocular Rivalry</td>
</tr>
<tr>
<td>• Biofuels: Producing Ethanol from Cellulosic Material</td>
</tr>
<tr>
<td>• Blood Pressure Measurement</td>
</tr>
<tr>
<td>• Blood Withdrawal I</td>
</tr>
<tr>
<td>• Blood Withdrawal II</td>
</tr>
<tr>
<td>• C. elegans Chemotaxis Assay</td>
</tr>
<tr>
<td>• C. elegans Development and Reproduction</td>
</tr>
<tr>
<td>• C. elegans Maintenance</td>
</tr>
<tr>
<td>• Calcium Imaging in Neurons</td>
</tr>
<tr>
<td>• Calibration Curves</td>
</tr>
<tr>
<td>• Capillary Electrophoresis (CE)</td>
</tr>
<tr>
<td>• Carbon and Nitrogen Analysis of Environmental Samples</td>
</tr>
<tr>
<td>• Cardiac Exam I: Inspection and Palpation</td>
</tr>
<tr>
<td>• Cardiac Exam II: Auscultation</td>
</tr>
<tr>
<td>• Cardiac Exam III: Abnormal Heart Sounds</td>
</tr>
<tr>
<td>• Categories and Inductive Inferences</td>
</tr>
<tr>
<td>• Cell Cycle Analysis</td>
</tr>
<tr>
<td>• Cell-surface Biotinylation Assay</td>
</tr>
</tbody>
</table>
• Central Venous Catheter Insertion: Femoral Vein with Ultrasound Guidance
• Central Venous Catheter Insertion: Internal Jugular with Ultrasound Guidance
• Central Venous Catheter Insertion: Subclavian Vein
• Chick ex ovo Culture
• Children's Reliance on Artist Intentions When Identifying Pictures
• Chromatin Immunoprecipitation
• Chromatography-Based Biomolecule Purification Methods
• Co-Immunoprecipitation and Pull-Down Assays
• Color Afterimages
• Column Chromatography
• Common Lab Glassware and Uses
• Community DNA Extraction from Bacterial Colonies
• Compound Administration I
• Compound Administration II
• Compound Administration III
• Compound Administration IV
• Comprehensive Breast Exam
• Conducting Reactions Below Room Temperature
• Considerations for Rodent Surgery
• Conversion of Fatty Acid Methyl Esters by Saponification for Uk'37 Paleothermometry
• Coordination Chemistry Complexes
• Cranial Nerves Exam I (I-VI)
• Cranial Nerves Exam II (VII-XII)
• Crowding
• Culturing and Enumerating Bacteria from Soil Samples
• Cyclic Voltammetry (CV)
• Cytogenetics
• DNA Gel Electrophoresis
• DNA Ligation Reactions
• DNA Methylation Analysis
• Decision-making and the Iowa Gambling Task
• Decoding Auditory Imagery with Multivoxel Pattern Analysis
• Degassing Liquids with Freeze-Pump-Thaw Cycling
• Density Gradient Ultracentrifugation
• Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
• Detecting Reactive Oxygen Species
• Detection of Bacteriophages in Environmental Samples
• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
• Determination of Moisture Content in Soil
• Determining Rate Laws and the Order of Reaction
• Determining Spatial Orientation of Rock Layers with the Brunton Compass
• Determining the Density of a Solid and Liquid
• Determining the Empirical Formula
• Determining the Mass Percent Composition in an Aqueous Solution
• Determining the Solubility Rules of Ionic Compounds
• Development and Reproduction of the Laboratory Mouse
• Development of the Chick
• Diagnostic Necropsy and Tissue Harvest
• Dialysis: Diffusion Based Separation
• Dichotic Listening
• Dissolved Oxygen in Surface Water
• Drosophila Development and Reproduction
• Drosophila Larval IHC
• Drosophila Maintenance
• Drosophila melanogaster Embryo and Larva Harvesting and Preparation
• Ear Exam
• Elbow Exam
• Electroencephalography (EEG)
• Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat
• Electrophoretic Mobility Shift Assay (EMSA)
• Embryonic Stem Cell Culture and Differentiation
• Emergency Tube Thoracostomy (Chest Tube Placement)
• Emergent Lateral Canthotomy and Inferior Catholysis
• Enzyme Assays and Kinetics
• Ethics in Psychology Research
• Event-related Potentials and the Oddball Task
• Executive Function and the Dimensional Change Card Sort Task
• Executive Function in Autism Spectrum Disorder
• Experimentation using a Confederate
• Explant Culture for Developmental Studies
• Explant Culture of Neural Tissue
• Expression Profiling with Microarrays
• Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction
• Eye Exam
• Eye Tracking in Cognitive Experiments
• FM Dyes in Vesicle Recycling
• Fate Mapping
• Fear Conditioning
• Filamentous Fungi
• Finding Your Blind Spot and Perceptual Filling-in
• Foot Exam
• Fractional Distillation
• Freezing-Point Depression to Determine an Unknown Compound
• From Theory to Design: The Role of Creativity in Designing Experiments
• Fundamentals of Breeding and Weaning
• Förster Resonance Energy Transfer (FRET)
• Gas Chromatography (GC) with Flame-Ionization Detection
• Gel Purification
• Gene Silencing with Morpholinos
• General Approach to the Physical Exam
• Genetic Crosses
• Genetic Engineering of Model Organisms
• Genetic Screens
• Genome Editing
• Gram Staining of Bacteria from Environmental Sources
• Growing Crystals for X-ray Diffraction Analysis
• Habituation: Studying Infants Before They Can Talk
• Hand and Wrist Exam
• High-Performance Liquid Chromatography (HPLC)
• Hip Exam
• Histological Sample Preparation for Light Microscopy
• Histological Staining of Neural Tissue
• How Children Solve Problems Using Causal Reasoning
• Ideal Gas Law
• Igneous Intrusive Rock
• Igneous Volcanic Rock
• In ovo Electroporation of Chicken Embryos
• Inattentional Blindness
• Incidental Encoding
• Induced Pluripotency
• Internal Standards
• Intra-articular Shoulder Injection for Reduction Following Anterior Shoulder Dislocation
• Intraosseous Needle Placement
• Introducing Experimental Agents into the Mouse
• Introduction to Catalysis
• Introduction to Fluorescence Microscopy
• Introduction to Light Microscopy
• Introduction to Mass Spectrometry
• Introduction to Serological Pipettes and Pipettors
• Introduction to Titration
• Introduction to the Bunsen Burner
• Introduction to the Microplate Reader
• Introduction to the Spectrophotometer
• Invasion Assay Using 3D Matrices
• Invertebrate Lifespan Quantification
• Ion-Exchange Chromatography
• Isolating Nucleic Acids from Yeast
• Isolation of Fecal Bacteria from Water Samples by Filtration
• Just-noticeable Differences
• Knee Exam
• Language: The N400 in Semantic Incongruity
• Le Châtelier's Principle
• Lead Analysis of Soil Using Atomic Absorption Spectroscopy
• Learning and Memory: The Remember-Know Task
• Live Cell Imaging of Mitosis
• Lower Back Exam
• Lymph Node Exam
• MALDI-TOF Mass Spectrometry
• Making Solutions in the Laboratory
• Making a Geologic Cross Section
• Male Rectal Exam
• Manipulating an Independent Variable through Embodiment
• Measuring Children's Trust in Testimony
• Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
• Measuring Mass in the Laboratory
• Measuring Reaction Time and Donders' Method of Subtraction
• Measuring Tropospheric Ozone
• Measuring Verbal Working Memory Span
• Measuring Vital Signs
• Memory Development: Demonstrating How Repeated Questioning Leads to False Memories
• Mental Rotation
• Metabolic Labeling
• Metacognitive Development: How Children Estimate Their Memory
• Method of Standard Addition
• Modeling Social Stress
• Molecular Cloning
• Motion-induced Blindness
• Motor Exam I
• Motor Exam II
• Motor Learning in Mirror Drawing
• Motor Maps
• Mouse Genotyping
• Multiple Object Tracking
• Murine In Utero Electroporation
• Mutual Exclusivity: How Children Learn the Meanings of Words
• Neck Exam
• Needle Thoracostomy (needle Decompression) for Temporizing Tension Pneumothorax Treatment
• Neuronal Transfection Methods
• Nose, Sinuses, Oral Cavity and Pharynx Exam
• Nuclear Magnetic Resonance (NMR) Spectroscopy
• Numerical Cognition: More or Less
• Nutrients in Aquatic Ecosystems
• Object Substitution Masking
• Observation and Inspection
• Observational Research
• Ophthalmoscopy
• PCR: The Polymerase Chain Reaction
• Palpation
• Passaging Cells
• Patch Clamp Electrophysiology
• Pelvic Exam I: Assessment of the External Genitalia
• Pelvic Exam II: Speculum Exam
• Pelvic Exam III: Bimanual and Rectovaginal Exam
• Percussion
• Percutaneous Cricothyrotomy (Seldinger Technique)
• Performing 1D Thin Layer Chromatography
• Pericardiocentesis
• Peripheral Vascular Exam
• Peripheral Vascular Exam Using a Continuous Wave Doppler
• Peripheral Venous Cannulation
• Perspectives on Sensation and Perception
• Photometric Protein Determination
• Physical Properties Of Minerals I: Crystals and Cleavage
• Physical Properties Of Minerals II: Polymineralic Analysis
• Physiological Correlates of Emotion Recognition
• Piaget's Conservation Task and the Influence of Task Demands
• Pilot Testing
• Placebos in Research
• Plasmid Purification
• Positive Reinforcement Studies
• Preparing Anhydrous Reagents and Equipment
• Primary Neuronal Cultures
• Proper Adjustment of Patient Attire during the Physical Exam
• Prospect Theory
• Protein Crystallization
• Proton Exchange Membrane Fuel Cells
• Purification of a Total Lipid Extract with Column Chromatography
• Purifying Compounds by Recrystallization
• Quantifying Environmental Microorganisms and Viruses Using qPCR
• RNA Analysis of Environmental Samples Using RT-PCR
• RNA-Seq
• RNAi in C. elegans
• Raman Spectroscopy for Chemical Analysis
• Realism in Experimentation
• Recombineering and Gene Targeting
• Reconstitution of Membrane Proteins
• Regulating Temperature in the Lab: Applying Heat
• Regulating Temperature in the Lab: Preserving Samples Using Cold
• Reliability in Psychology Experiments
<table>
<thead>
<tr>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Removal of Branched and Cyclic Compounds by Urea Adduction for Uk’37</td>
</tr>
<tr>
<td>Paleothermometry</td>
</tr>
<tr>
<td>• Respiratory Exam I: Inspection and Palpation</td>
</tr>
<tr>
<td>• Respiratory Exam II: Percussion and Auscultation</td>
</tr>
<tr>
<td>• Restriction Enzyme Digests</td>
</tr>
<tr>
<td>• Rodent Handling and Restraint Techniques</td>
</tr>
<tr>
<td>• Rodent Identification I</td>
</tr>
<tr>
<td>• Rodent Identification II</td>
</tr>
<tr>
<td>• Rodent Stereotaxic Surgery</td>
</tr>
<tr>
<td>• Rotary Evaporation to Remove Solvent</td>
</tr>
<tr>
<td>• SNP Genotyping</td>
</tr>
<tr>
<td>• Sample Preparation for Analytical Preparation</td>
</tr>
<tr>
<td>• Scanning Electron Microscopy (SEM)</td>
</tr>
<tr>
<td>• Schlenk Lines Transfer of Solvents</td>
</tr>
<tr>
<td>• Self-administration Studies</td>
</tr>
<tr>
<td>• Self-report vs. Behavioral Measures of Recycling</td>
</tr>
<tr>
<td>• Sensory Exam</td>
</tr>
<tr>
<td>• Separating Protein with SDS-PAGE</td>
</tr>
<tr>
<td>• Separation of Mixtures via Precipitation</td>
</tr>
<tr>
<td>• Shoulder Exam I</td>
</tr>
<tr>
<td>• Shoulder Exam II</td>
</tr>
<tr>
<td>• Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium</td>
</tr>
<tr>
<td>• Solid-Liquid Extraction</td>
</tr>
<tr>
<td>• Solutions and Concentrations</td>
</tr>
<tr>
<td>• Sonication Extraction of Lipid Biomarkers from Sediment</td>
</tr>
<tr>
<td>• Soxhlet Extraction of Lipid Biomarkers from Sediment</td>
</tr>
<tr>
<td>• Spatial Cueing</td>
</tr>
<tr>
<td>• Spatial Memory Testing Using Mazes</td>
</tr>
<tr>
<td>• Spectrophotometric Determination of an Equilibrium Constant</td>
</tr>
<tr>
<td>• Sterile Tissue Harvest</td>
</tr>
<tr>
<td>• Surface Plasmon Resonance (SPR)</td>
</tr>
<tr>
<td>• Surgical Cricothyrotomy</td>
</tr>
<tr>
<td>• Tandem Mass Spectrometry</td>
</tr>
<tr>
<td>• Testing For Genetically Modified Foods</td>
</tr>
<tr>
<td>• The ATP Bioluminescence Assay</td>
</tr>
<tr>
<td>• The Ames Room</td>
</tr>
<tr>
<td>• The Attentional Blink</td>
</tr>
<tr>
<td>• The Costs and Benefits of Natural Pedagogy</td>
</tr>
<tr>
<td>• The ELISA Method</td>
</tr>
<tr>
<td>• The Factorial Experiment</td>
</tr>
<tr>
<td>• The Ideal Gas Law</td>
</tr>
<tr>
<td>• The Inverted-face Effect</td>
</tr>
<tr>
<td>• The McGurk Effect</td>
</tr>
<tr>
<td>• The Morris Water Maze</td>
</tr>
<tr>
<td>• The Multi-group Experiment</td>
</tr>
<tr>
<td>• The Precision of Visual Working Memory with Delayed Estimation</td>
</tr>
<tr>
<td>• The Rouge Test: Searching for a Sense of Self</td>
</tr>
<tr>
<td>STANDARD</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>BENCHMARK</td>
</tr>
</tbody>
</table>

- The Rubber Hand Illusion
- The Simple Experiment: Two-group Design
- The Split Brain
- The Staircase Procedure for Finding a Perceptual Threshold
- The TUNEL Assay
- The Transwell Migration Assay
- The Western Blot
- Thyroid Exam
- Tissue Regeneration with Somatic Stem Cells
- Transplantation Studies
- Tree Identification: How To Use a Dichotomous Key
- Tree Survey: Point-Centered Quarter Sampling Method
- Turbidity and Total Solids in Surface Water
- Two-Dimensional Gel Electrophoresis
- Ultraviolet-Visible (UV-Vis) Spectroscopy
- Understanding Concentration and Measuring Volumes
- Using Differential Scanning Calorimetry to Measure Changes in Enthalpy
- Using Diffusion Tensor Imaging in Traumatic Brain Injury
- Using GIS to Investigate Urban Forestry
- Using TMS to Measure Motor Excitability During Action Observation
- Using Topographic Maps to Generate Topographic Profiles
- Using Your Head: Measuring Infants’ Rational Imitation of Actions
- Using a pH Meter
- Verbal Priming
- Visual Attention: fMRI Investigation of Object-based Attentional Control
- Visual Search for Features and Conjunctions
- Visual Statistical Learning
- Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy
- Water Quality Analysis via Indicator Organisms
- Whole-Mount In Situ Hybridization
- Within-subjects Repeated-measures Design
- X-ray Fluorescence (XRF)
- Yeast Maintenance
- Yeast Reproduction
- Yeast Transformation and Cloning
- Zebrafish Breeding and Embryo Handling
- Zebrafish Maintenance and Husbandry
- Zebrafish Microinjection Techniques
- Zebrafish Reproduction and Development
- fMRI: Functional Magnetic Resonance Imaging
<table>
<thead>
<tr>
<th>INDICATOR / PROFICIENCY LEVEL</th>
<th>RST.9-10.7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.</td>
<td></td>
</tr>
</tbody>
</table>

JoVE
- Algae Enumeration via Culturable Methodology
- An Introduction to Aging and Regeneration
- An Introduction to Behavioral Neuroscience
- An Introduction to Caenorhabditis elegans
- An Introduction to Cell Division
- An Introduction to Cell Metabolism
- An Introduction to Cognition
- An Introduction to Developmental Neurobiology
- An Introduction to Drosophila melanogaster
- An Introduction to Endocytosis and Exocytosis
- An Introduction to Learning and Memory
- An Introduction to Modeling Behavioral Disorders and Stress
- An Introduction to Motor Control
- An Introduction to Neurophysiology
- An Introduction to Reward and Addiction
- An Overview of Alkenone Biomarker Analysis for Paleothermometry
- An Overview of Genetic Analysis
- An Overview of Genetics and Disease
- An Overview of bGDGT Biomarker Analysis for Paleoclimatology
- Analysis of Earthworm Populations in Soil
- Annexin V and Propidium Iodide Labeling
- Anterograde Amnesia
- Anxiety Testing
- Approximate Number Sense Test
- Are You Smart or Hardworking? How Praise Influences Children’s Motivation
- Assembly of a Reflux System for Heated Chemical Reactions
- Assessing Dexterity with Reaching Tasks
- Bacterial Growth Curve Analysis and its Environmental Applications
- Balance and Coordination Testing
- Basic Mouse Care and Maintenance
- Binocular Rivalry
- Biofuels: Producing Ethanol from Cellulosic Material
- Blood Pressure Measurement
- C. elegans Chemotaxis Assay
- Calcium Imaging in Neurons
- Calibration Curves
- Capillary Electrophoresis (CE)
- Carbon and Nitrogen Analysis of Environmental Samples
- Categories and Inductive Inferences
• Cell Cycle Analysis
• Cell-surface Biotinylation Assay
• Children’s Reliance on Artist Intentions When Identifying Pictures
• Chromatin Immunoprecipitation
• Chromatography-Based Biomolecule Purification Methods
• Co-Immunoprecipitation and Pull-Down Assays
• Column Chromatography
• Community DNA Extraction from Bacterial Colonies
• Conducting Reactions Below Room Temperature
• Conversion of Fatty Acid Methyl Esters by Saponification for Uk’37 Paleothermometry
• Coordination Chemistry Complexes
• Crowding
• Culturing and Enumerating Bacteria from Soil Samples
• Cyclic Voltammetry (CV)
• DNA Methylation Analysis
• Decision-making and the Iowa Gambling Task
• Decoding Auditory Imagery with Multivoxel Pattern Analysis
• Degassing Liquids with Freeze-Pump-Thaw Cycling
• Density Gradient Ultracentrifugation
• Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis
• Detecting Reactive Oxygen Species
• Determination Of Nox in Automobile Exhaust Using UV-VIS Spectroscopy
• Determination of Moisture Content in Soil
• Determining Rate Laws and the Order of Reaction
• Determining Spatial Orientation of Rock Layers with the Brunton Compass
• Determining the Density of a Solid and Liquid
• Determining the Empirical Formula
• Determining the Mass Percent Composition in an Aqueous Solution
• Determining the Solubility Rules of Ionic Compounds
• Development and Reproduction of the Laboratory Mouse
• Dialysis: Diffusion Based Separation
• Dichotic Listening
• Dissolved Oxygen in Surface Water
• Drosophila Development and Reproduction
• Electro-encephalography (EEG)
• Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat
• Electrophoretic Mobility Shift Assay (EMSA)
• Enzyme Assays and Kinetics
• Ethics in Psychology Research
• Event-related Potentials and the Oddball Task
• Executive Function and the Dimensional Change Card Sort Task
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Function in Autism Spectrum Disorder</td>
</tr>
<tr>
<td>Experimentation using a Confederate</td>
</tr>
<tr>
<td>Expression Profiling with Microarrays</td>
</tr>
<tr>
<td>Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction</td>
</tr>
<tr>
<td>Eye Tracking in Cognitive Experiments</td>
</tr>
<tr>
<td>FM Dyes in Vesicle Recycling</td>
</tr>
<tr>
<td>Fate Mapping</td>
</tr>
<tr>
<td>Fear Conditioning</td>
</tr>
<tr>
<td>Fractional Distillation</td>
</tr>
<tr>
<td>Freezing-Point Depression to Determine an Unknown Compound</td>
</tr>
<tr>
<td>From Theory to Design: The Role of Creativity in Designing Experiments</td>
</tr>
<tr>
<td>Förster Resonance Energy Transfer (FRET)</td>
</tr>
<tr>
<td>Gas Chromatography (GC) with Flame-Ionization Detection</td>
</tr>
<tr>
<td>Gene Silencing with Morpholinos</td>
</tr>
<tr>
<td>Genetic Crosses</td>
</tr>
<tr>
<td>Genetic Screens</td>
</tr>
<tr>
<td>Growing Crystals for X-ray Diffraction Analysis</td>
</tr>
<tr>
<td>Habituation: Studying Infants Before They Can Talk</td>
</tr>
<tr>
<td>High-Performance Liquid Chromatography (HPLC)</td>
</tr>
<tr>
<td>How Children Solve Problems Using Causal Reasoning</td>
</tr>
<tr>
<td>Ideal Gas Law</td>
</tr>
<tr>
<td>Igneous Intrusive Rock</td>
</tr>
<tr>
<td>Igneous Volcanic Rock</td>
</tr>
<tr>
<td>Inattentional Blindness</td>
</tr>
<tr>
<td>Incidental Encoding</td>
</tr>
<tr>
<td>Internal Standards</td>
</tr>
<tr>
<td>Introducing Experimental Agents into the Mouse</td>
</tr>
<tr>
<td>Introduction to Catalysis</td>
</tr>
<tr>
<td>Introduction to Mass Spectrometry</td>
</tr>
<tr>
<td>Introduction to Titration</td>
</tr>
<tr>
<td>Introduction to the Microplate Reader</td>
</tr>
<tr>
<td>Introduction to the Spectrophotometer</td>
</tr>
<tr>
<td>Invasion Assay Using 3D Matrices</td>
</tr>
<tr>
<td>Invertebrate Lifespan Quantification</td>
</tr>
<tr>
<td>Ion-Exchange Chromatography</td>
</tr>
<tr>
<td>Isolating Nucleic Acids from Yeast</td>
</tr>
<tr>
<td>Just-noticeable Differences</td>
</tr>
<tr>
<td>Language: The N400 in Semantic Incongruity</td>
</tr>
<tr>
<td>Le Châtelier's Principle</td>
</tr>
<tr>
<td>Lead Analysis of Soil Using Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>Learning and Memory: The Remember-Know Task</td>
</tr>
<tr>
<td>MALDI-TOF Mass Spectrometry</td>
</tr>
<tr>
<td>Making Solutions in the Laboratory</td>
</tr>
<tr>
<td>Making a Geologic Cross Section</td>
</tr>
<tr>
<td>Manipulating an Independent Variable through Embodiment</td>
</tr>
<tr>
<td>Measuring Children's Trust in Testimony</td>
</tr>
</tbody>
</table>
• Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
• Measuring Reaction Time and Donders' Method of Subtraction
• Measuring Tropospheric Ozone
• Measuring Verbal Working Memory Span
• Measuring Vital Signs
• Memory Development: Demonstrating How Repeated Questioning Leads to False Memories
• Mental Rotation
• Metabolic Labeling
• Metacognitive Development: How Children Estimate Their Memory
• Method of Standard Addition
• Modeling Social Stress
• Motion-induced Blindness
• Motor Learning in Mirror Drawing
• Motor Maps
• Multiple Object Tracking
• Mutual Exclusivity: How Children Learn the Meanings of Words
• Nuclear Magnetic Resonance (NMR) Spectroscopy
• Numerical Cognition: More or Less
• Nutrients in Aquatic Ecosystems
• Object Substitution Masking
• Observational Research
• PCR: The Polymerase Chain Reaction
• Patch Clamp Electrophysiology
• Performing 1D Thin Layer Chromatography
• Pericardiocentesis
• Peripheral Vascular Exam Using a Continuous Wave Doppler
• Perspectives on Cognitive Psychology
• Perspectives on Neuropsychology
• Photometric Protein Determination
• Physical Properties Of Minerals I: Crystals and Cleavage
• Physical Properties Of Minerals II: Polymineralic Analysis
• Physiological Correlates of Emotion Recognition
• Piaget's Conservation Task and the Influence of Task Demands
• Pilot Testing
• Placebos in Research
• Plasmid Purification
• Positive Reinforcement Studies
• Preparing Anhydrous Reagents and Equipment
• Prospect Theory
• Protein Crystallization
• Proton Exchange Membrane Fuel Cells
• Purification of a Total Lipid Extract with Column Chromatography
• Purifying Compounds by Recrystallization
• Quantifying Environmental Microorganisms and Viruses Using qPCR
• RNA Analysis of Environmental Samples Using RT-PCR
• RNA-Seq
• RNAi in C. elegans
• Raman Spectroscopy for Chemical Analysis
• Realism in Experimentation
• Reconstitution of Membrane Proteins
• Reliability in Psychology Experiments
• Removal of Branched and Cyclic Compounds by Urea Adduction for Uk’37 Paleothermometry
• Rotary Evaporation to Remove Solvent
• SNP Genotyping
• Sample Preparation for Analytical Preparation
• Scanning Electron Microscopy (SEM)
• Schlenk Lines Transfer of Solvents
• Self-administration Studies
• Self-report vs. Behavioral Measures of Recycling
• Separation of Mixtures via Precipitation
• Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium
• Solid-Liquid Extraction
• Solutions and Concentrations
• Sonication Extraction of Lipid Biomarkers from Sediment
• Soxhlet Extraction of Lipid Biomarkers from Sediment
• Spatial Cueing
• Spatial Memory Testing Using Mazes
• Spectrophotometric Determination of an Equilibrium Constant
• Surface Plasmon Resonance (SPR)
• Tandem Mass Spectrometry
• Testing For Genetically Modified Foods
• The ATP Bioluminescence Assay
• The Attentional Blink
• The Costs and Benefits of Natural Pedagogy
• The ELISA Method
• The Factorial Experiment
• The Ideal Gas Law
• The Inverted-face Effect
• The Morris Water Maze
• The Multi-group Experiment
• The Precision of Visual Working Memory with Delayed Estimation
• The Rouge Test: Searching for a Sense of Self
• The Simple Experiment: Two-group Design
• The Split Brain
• The Staircase Procedure for Finding a Perceptual Threshold
• The TUNEL Assay
• The Transwell Migration Assay
• The Western Blot
<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.WHST.9-10.</th>
<th>Writing Standards for Literacy in Science and Technical Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>Text Types and Purposes</td>
<td></td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>WHST.9-10.1.</td>
<td>Write arguments focused on discipline-specific content.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>WHST.9-10.1(a)</td>
<td>Introduce precise claim(s), distinguish the claim(s) from</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alternate or opposing claims, and create an organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that establishes clear relationships among the claim(s),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>counterclaims, reasons, and evidence.</td>
</tr>
<tr>
<td></td>
<td>JoVE</td>
<td>• The Multi-group Experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The Simple Experiment: Two-group Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.WHST.9-10.</th>
<th>Writing Standards for Literacy in Science and Technical Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>Text Types and Purposes</td>
<td></td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>WHST.9-10.2.</td>
<td>Write informative/explanatory texts, including the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>narration of historical events, scientific procedures/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>experiments, or technical processes.</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>WHST.9-10.2(a)</td>
<td>Introduce a topic and organize ideas, concepts, and information to make important connections and distinctions; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>JoVE</td>
<td>The Multi-group Experiment</td>
<td>The Simple Experiment: Two-group Design</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>WHST.9-10.2(d)</td>
<td>Use precise language and domain-specific vocabulary to manage the complexity of the topic and convey a style appropriate to the discipline and context as well as to the expertise of likely readers.</td>
</tr>
<tr>
<td>JoVE</td>
<td>Abdominal Exam I: Inspection and Auscultation</td>
<td>Abdominal Exam II: Percussion</td>
</tr>
<tr>
<td></td>
<td>Algae Enumeration via Culturable Methodology</td>
<td>An Introduction to Aging and Regeneration</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Cell Death</td>
<td>An Introduction to Cell Division</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Cellular and Molecular Neuroscience</td>
<td>An Introduction to Cognition</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Drosophila melanogaster</td>
<td>An Introduction to Endocytosis and Exocytosis</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Molecular Developmental Biology</td>
<td>An Introduction to Motor Control</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Organogenesis</td>
<td>An Introduction to Reward and Addiction</td>
</tr>
<tr>
<td></td>
<td>An Introduction to Transfection</td>
<td>An Introduction to Working in the Hood</td>
</tr>
<tr>
<td></td>
<td>An Introduction to the Laboratory Mouse: Mus musculus</td>
<td></td>
</tr>
</tbody>
</table>
• An Introduction to the Micropipettor
• An Introduction to the Zebrafish: Danio rerio
• An Overview of Alkenone Biomarker Analysis for Paleothermometry
• An Overview of Epigenetics
• An Overview of Gene Expression
• An Overview of Genetic Analysis
• An Overview of Genetic Engineering
• An Overview of Genetics and Disease
• An Overview of bGDGT Biomarker Analysis for Paleoclimatology
• Analysis of Earthworm Populations in Soil
• Anesthesia Induction and Maintenance
• Ankle Exam
• Annexin V and Propidium Iodide Labeling
• Anterograde Amnesia
• Anxiety Testing
• Approximate Number Sense Test
• Are You Smart or Hardworking? How Praise Influences Children’s Motivation
• Arterial Line Placement
• Aseptic Technique in Environmental Science
• Assembly of a Reflux System for Heated Chemical Reactions
• Assessing Dexterity with Reaching Tasks
• Auscultation
• Bacterial Growth Curve Analysis and its Environmental Applications
• Bacterial Transformation: Electroporation
• Bacterial Transformation: The Heat Shock Method
• Balance and Coordination Testing
• Basic Care Procedures
• Basic Chick Care and Maintenance
• Basic Life Support Part II: Airway/Breathing and Continued Cardiopulmonary Resuscitation
• Basic Life Support: Cardiopulmonary Resuscitation and Defibrillation
• Basic Mouse Care and Maintenance
• Binocular Rivalry
• Biofuels: Producing Ethanol from Cellulosic Material
• Blood Pressure Measurement
• Blood Withdrawal I
• Blood Withdrawal II
• C. elegans Chemotaxis Assay
• C. elegans Development and Reproduction
• C. elegans Maintenance
• Calcium Imaging in Neurons
• Calibration Curves
• Capillary Electrophoresis (CE)
• Carbon and Nitrogen Analysis of Environmental Samples
UV-VIS Spectroscopy
• Determination of Moisture Content in Soil
• Determining Rate Laws and the Order of Reaction
• Determining Spatial Orientation of Rock Layers with the Brunton Compass
• Determining the Density of a Solid and Liquid
• Determining the Empirical Formula
• Determining the Mass Percent Composition in an Aqueous Solution
• Determining the Solubility Rules of Ionic Compounds
• Development and Reproduction of the Laboratory Mouse
• Development of the Chick
• Diagnostic Necropsy and Tissue Harvest
• Dialysis: Diffusion Based Separation
• Dichotonic Listening
• Dissolved Oxygen in Surface Water
• Drosophila Development and Reproduction
• Drosophila Larval IHC
• Drosophila Maintenance
• Drosophila melanogaster Embryo and Larva Harvesting and Preparation
• Ear Exam
• Elbow Exam
• Electroencephalography (EEG)
• Electrochemical Measurements of Supported Catalysts Using a Potentiostat/Galvanostat
• Electrophoretic Mobility Shift Assay (EMSA)
• Embryonic Stem Cell Culture and Differentiation
• Emergency Tube Thoracostomy (Chest Tube Placement)
• Emergent Lateral Canthotomy and Inferior Catholysis
• Enzyme Assays and Kinetics
• Ethics in Psychology Research
• Event-related Potentials and the Oddball Task
• Executive Function and the Dimensional Change Card Sort Task
• Executive Function in Autism Spectrum Disorder
• Experimentation using a Confederate
• Explant Culture for Developmental Studies
• Explant Culture of Neural Tissue
• Expression Profiling with Microarrays
• Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction
• Eye Exam
• Eye Tracking in Cognitive Experiments
• FM Dyes in Vesicle Recycling
• Fate Mapping
• Fear Conditioning
• Filamentous Fungi
• Finding Your Blind Spot and Perceptual Filling-in
• Foot Exam
• Fractional Distillation
• Freezing-Point Depression to Determine an Unknown Compound
• From Theory to Design: The Role of Creativity in Designing Experiments
• Fundamentals of Breeding and Weaning
• Förster Resonance Energy Transfer (FRET)
• Gas Chromatography (GC) with Flame-Ionization Detection
• Gel Purification
• Gene Silencing with Morpholinos
• General Approach to the Physical Exam
• Genetic Crosses
• Genetic Engineering of Model Organisms
• Genetic Screens
• Genome Editing
• Gram Staining of Bacteria from Environmental Sources
• Growing Crystals for X-ray Diffraction Analysis
• Habituation: Studying Infants Before They Can Talk
• Hand and Wrist Exam
• High-Performance Liquid Chromatography (HPLC)
• Hip Exam
• Histological Sample Preparation for Light Microscopy
• Histological Staining of Neural Tissue
• How Children Solve Problems Using Causal Reasoning
• Ideal Gas Law
• Igneous Intrusive Rock
• Igneous Volcanic Rock
• In ovo Electroporation of Chicken Embryos
• Inattentional Blindness
• Incidental Encoding
• Induced Pluripotency
• Internal Standards
• Intra-articular Shoulder Injection for Reduction Following Anterior Shoulder Dislocation
• Intraosseous Needle Placement
• Introducing Experimental Agents into the Mouse
• Introduction to Catalysis
• Introduction to Fluorescence Microscopy
• Introduction to Light Microscopy
• Introduction to Mass Spectrometry
• Introduction to Serological Pipettes and Pipettors
• Introduction to Titration
• Introduction to the Bunsen Burner
• Introduction to the Microplate Reader
• Introduction to the Spectrophotometer
• Invasion Assay Using 3D Matrices
• Invertebrate Lifespan Quantification
• Ion-Exchange Chromatography
• Isolating Nucleic Acids from Yeast
• Isolation of Fecal Bacteria from Water Samples by Filtration
• Just-noticeable Differences
• Knee Exam
• Language: The N400 in Semantic Incongruity
• Le Châtelier’s Principle
• Lead Analysis of Soil Using Atomic Absorption Spectroscopy
• Learning and Memory: The Remember-Know Task
• Live Cell Imaging of Mitosis
• Lower Back Exam
• Lymph Node Exam
• MALDI-TOF Mass Spectrometry
• Making Solutions in the Laboratory
• Making a Geologic Cross Section
• Male Rectal Exam
• Manipulating an Independent Variable through Embodiment
• Measuring Children’s Trust in Testimony
• Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
• Measuring Mass in the Laboratory
• Measuring Reaction Time and Donders’ Method of Subtraction
• Measuring Tropospheric Ozone
• Measuring Verbal Working Memory Span
• Measuring Vital Signs
• Memory Development: Demonstrating How Repeated Questioning Leads to False Memories
• Mental Rotation
• Metabolic Labeling
• Metacognitive Development: How Children Estimate Their Memory
• Method of Standard Addition
• Modeling Social Stress
• Molecular Cloning
• Motion-induced Blindness
• Motor Exam I
• Motor Exam II
• Motor Learning in Mirror Drawing
• Motor Maps
• Mouse Genotyping
• Multiple Object Tracking
• Murine In Utero Electroporation
• Mutual Exclusivity: How Children Learn the Meanings of Words
• Neck Exam
• Needle Thoracostomy (needle Decompression) for Temporizing Tension Pneumothorax Treatment
• Neuronal Transfection Methods
• Nose, Sinuses, Oral Cavity and Pharynx Exam
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- Numerical Cognition: More or Less
- Nutrients in Aquatic Ecosystems
- Object Substitution Masking
- Observation and Inspection
- Observational Research
- Ophthalmoscopic Examination
- PCR: The Polymerase Chain Reaction
- Palpation
- Passaging Cells
- Patch Clamp Electrophysiology
- Pelvic Exam I: Assessment of the External Genitalia
- Pelvic Exam II: Speculum Exam
- Pelvic Exam III: Bimanual and Rectovaginal Exam
- Percussion
- Percutaneous Cricothyrotomy (Seldinger Technique)
- Performing 1D Thin Layer Chromatography
- Pericardiocentesis
- Peripheral Vascular Exam
- Peripheral Vascular Exam Using a Continuous Wave Doppler
- Peripheral Venous Cannulation
- Perspectives on Sensation and Perception
- Photometric Protein Determination
- Physical Properties Of Minerals I: Crystals and Cleavage
- Physical Properties Of Minerals II: Polymineralic Analysis
- Physiological Correlates of Emotion Recognition
- Piaget's Conservation Task and the Influence of Task Demands
- Pilot Testing
- Placebos in Research
- Plasmid Purification
- Positive Reinforcement Studies
- Preparing Anhydrous Reagents and Equipment
- Primary Neuronal Cultures
- Proper Adjustment of Patient Attire during the Physical Exam
- Prospect Theory
- Protein Crystallization
- Proton Exchange Membrane Fuel Cells
- Purification of a Total Lipid Extract with Column Chromatography
- Purifying Compounds by Recrystallization
- Quantifying Environmental Microorganisms and Viruses Using qPCR
- RNA Analysis of Environmental Samples Using RT-PCR
- RNA-Seq
- RNAi in C. elegans
- Raman Spectroscopy for Chemical Analysis
- Realism in Experimentation
• Recombineering and Gene Targeting
• Reconstitution of Membrane Proteins
• Regulating Temperature in the Lab: Applying Heat
• Regulating Temperature in the Lab: Preserving Samples Using Cold
• Reliability in Psychology Experiments
• Removal of Branched and Cyclic Compounds by Urea Adduction for Uk’37 Paleo thermometry
• Respiratory Exam I: Inspection and Palpation
• Respiratory Exam II: Percussion and Auscultation
• Restriction Enzyme Digests
• Rodent Handling and Restraint Techniques
• Rodent Identification I
• Rodent Identification II
• Rodent Stereotaxic Surgery
• Rotary Evaporation to Remove Solvent
• SNP Genotyping
• Sample Preparation for Analytical Preparation
• Scanning Electron Microscopy (SEM)
• Schlenk Lines Transfer of Solvents
• Self-administration Studies
• Self-report vs. Behavioral Measures of Recycling
• Sensory Exam
• Separating Protein with SDS-PAGE
• Separation of Mixtures via Precipitation
• Shoulder Exam I
• Shoulder Exam II
• Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium
• Solid-Liquid Extraction
• Solutions and Concentrations
• Sonication Extraction of Lipid Biomarkers from Sediment
• Soxhlet Extraction of Lipid Biomarkers from Sediment
• Spatial Cueing
• Spatial Memory Testing Using Mazes
• Spectrophotometric Determination of an Equilibrium Constant
• Sterile Tissue Harvest
• Surface Plasmon Resonance (SPR)
• Surgical Cricothyrotomy
• Tandem Mass Spectrometry
• Testing For Genetically Modified Foods
• The ATP Bioluminescence Assay
• The Ames Room
• The Attentional Blink
• The Costs and Benefits of Natural Pedagogy
• The ELISA Method
• The Factorial Experiment
• The Ideal Gas Law
• The Inverted-face Effect
• The McGurk Effect
• The Morris Water Maze
• The Multi-group Experiment
• The Precision of Visual Working Memory with Delayed Estimation
• The Rouge Test: Searching for a Sense of Self
• The Rubber Hand Illusion
• The Simple Experiment: Two-group Design
• The Split Brain
• The Staircase Procedure for Finding a Perceptual Threshold
• The TUNEL Assay
• The Transwell Migration Assay
• The Western Blot
• Thyroid Exam
• Tissue Regeneration with Somatic Stem Cells
• Transplantation Studies
• Tree Identification: How To Use a Dichotomous Key
• Tree Survey: Point-Centered Quarter Sampling Method
• Turbidity and Total Solids in Surface Water
• Two-Dimensional Gel Electrophoresis
• Ultraviolet-Visible (UV-Vis) Spectroscopy
• Understanding Concentration and Measuring Volumes
• Using Differential Scanning Calorimetry to Measure Changes in Enthalpy
• Using Diffusion Tensor Imaging in Traumatic Brain Injury
• Using GIS to Investigate Urban Forestry
• Using TMS to Measure Motor Excitability During Action Observation
• Using Topographic Maps to Generate Topographic Profiles
• Using Your Head: Measuring Infants' Rational Imitation of Actions
• Using a pH Meter
• Verbal Priming
• Visual Attention: fMRI Investigation of Object-based Attentional Control
• Visual Search for Features and Conjunctions
• Visual Statistical Learning
• Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy
• Water Quality Analysis via Indicator Organisms
• Whole-Mount In Situ Hybridization
• Within-subjects Repeated-measures Design
• X-ray Fluorescence (XRF)
• Yeast Maintenance
• Yeast Reproduction
• Yeast Transformation and Cloning
• Zebrafish Breeding and Embryo Handling
• Zebrafish Maintenance and Husbandry
<table>
<thead>
<tr>
<th>STANDARD</th>
<th>KS.WHST.9-10.</th>
<th>Writing Standards for Literacy in Science and Technical Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td></td>
<td>Text Types and Purposes</td>
</tr>
<tr>
<td>INDICATOR / PROFICIENCY LEVEL</td>
<td>WHST.9-10.3.</td>
<td>(See note; not applicable as a separate requirement)</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>WHST.9-10.3(a)</td>
<td>Note: Students' narrative skills continue to grow in these grades. The Standards require that students be able to incorporate narrative elements effectively into arguments and informative/explanatory texts. In science and technical subjects, students must be able to write precise enough descriptions of the step-by-step procedures they use in their investigations or technical work that others can replicate them and (possibly) reach the same results.</td>
</tr>
</tbody>
</table>

JoVE
- Ethics in Psychology Research
- Experimentation using a Confederate
- From Theory to Design: The Role of Creativity in Designing Experiments
- Manipulating an Independent Variable through Embodiment
- Observational Research
- Pilot Testing
- Placebos in Research
- Realism in Experimentation
- Reliability in Psychology Experiments
- The Factorial Experiment
- The Multi-group Experiment
- The Simple Experiment: Two-group Design
- Within-subjects Repeated-measures Design

© 2017 EdGate Correlation Services, LLC. All Rights reserved.