Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

33.8: Electromagnetic Waves in Matter

TABLE OF
CONTENTS
JoVE Core
Physics

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Education
Electromagnetic Waves in Matter
 
TRANSCRIPT

33.8: Electromagnetic Waves in Matter

Electromagnetic waves can travel in the vacuum as well as in matter. For example light, which is an electromagnetic wave, can travel through air, water, or glass.

Consider the electromagnetic wave passing through a dielectric medium. In such a case, Maxwell's equations get modified. In Ampere's law, ε0 , the dielectric permittivity of free space is replaced with ε, the permittivity of dielectric. Also, the vacuum permeability μ0 is replaced by the permeability of the medium, μ.

Furthermore, the constant speed, c is replaced with a reduced velocity, v in the expression for the relationships between electric and magnetic fields derived using Faraday's and Ampere's law. By comparing those two relations, the speed of an electromagnetic wave in a dielectric can be obtained.

Equation1

For most dielectrics, the relative permeability κm is nearly equal to unity, excluding the insulating ferromagnetic materials. Since the dielectric constant κ is always greater than unity, the speed of electromagnetic waves in a dielectric is always less than the speed in the vacuum.

Equation2

In Optics, the ratio of the speed in the vacuum to the speed in a material is known as the refractive index of the material. The dielectric constant is a function of frequency. For instance, dielectric constant for water is 80.4 for steady fields but it is approximately 1.8 in the frequency range of visible light.


Suggested Reading

Tags

Electromagnetic Waves Matter Light Dielectric Medium Maxwell's Equations Ampere's Law Dielectric Permittivity Vacuum Permeability Reduced Velocity Electric And Magnetic Fields Speed Of Electromagnetic Wave Dielectrics Relative Permeability Insulating Ferromagnetic Materials Refractive Index Dielectric Constant Frequency

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter