In JoVE (1)

Other Publications (3)

Articles by Svetlana Rezinciuc in JoVE

 JoVE Biology

Scanning Electron Microscopy (SEM) Protocols for Problematic Plant, Oomycete, and Fungal Samples

1Biodiversity and Conservation Department, Real Jardín Botánico, CSIC, 2Research Support Unit, Real Jardín Botánico, CSIC, 3Mycology Department, Real Jardín Botánico, CSIC, 4Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)


JoVE 55031

Other articles by Svetlana Rezinciuc on PubMed

Microsatellite Markers for Direct Genotyping of the Crayfish Plague Pathogen Aphanomyces Astaci (Oomycetes) from Infected Host Tissues

Veterinary Microbiology. Jun, 2014  |  Pubmed ID: 24631110

Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.

Molecular Identification of a Bronopol Tolerant Strain of Saprolegnia Australis Causing Egg and Fry Mortality in Farmed Brown Trout, Salmo Trutta

Fungal Biology. Jul, 2014  |  Pubmed ID: 25088073

Some species of the genus Saprolegnia, such as Saprolegnia diclina and Saprolegnia ferax are responsible for devastating infections on salmonid eggs. Members of this group cause saprolegniasis, a disease resulting in considerable economic losses in aquaculture. Although both S. diclina and S. ferax have received much attention, the role of other Saprolegnia species in infecting fish eggs is less known. For this purpose, we have investigated the aetiology of chronic egg mortality events occurring in farmed brown trout, Salmo trutta. A total of 48 isolates were obtained from eggs with signs of infection as well as from water samples. A molecular analysis based on nrDNA internal transcribed spacer (ITS) operational taxonomic units indicated that the majority of the isolates correspond to Saprolegnia australis. All isolates of S. australis exhibited the same random amplified polymorphic DNA (RAPD) band patterns suggesting that a single strain is implicated in egg infections. The isolates followed Koch postulates using trout eggs and fry. Under standard concentrations of bronopol commonly used in farms, these isolates could grow, but not sporulate. However, both growth and sporulation were recovered when treatment was removed. This study shows that S. australis can infect and kill salmon eggs, and helps in defining oomycetes core pathogens.

AFLP-PCR and RAPD-PCR Evidences of the Transmission of the Pathogen Aphanomyces Astaci (Oomycetes) to Wild Populations of European Crayfish from the Invasive Crayfish Species, Procambarus Clarkii

Fungal Biology. Jul, 2014  |  Pubmed ID: 25088075

Aphanomyces astaci (Oomycetes) is responsible for the crayfish plague disease. This species is endemic of North America and five genotypes have been described using RAPD-PCR. The red swamp crayfish, Procambarus clarkii, is one of the most widely spread North American species and invasive in the world. However, no outbreaks on its specific genotype, i.e., genotype D, have ever been described in nature. We investigated three major series of crayfish plague outbreaks in indigenous crayfish populations of Austropotamobius pallipes, located in the areas of influence of P. clarkii. All samples collected tested positive for A. astaci using a rnDNA ITS-PCR test. We also performed an AFLP-PCR analysis on 19 isolates, and found that all isolates belong to genotype D. These isolates exhibited similar properties, i.e., adaptation to warm temperatures. We demonstrate, for the first time, the transmission of A. astaci genotype D to indigenous European populations of crayfish, and confirm that the properties of adaptation to warm water temperatures seem to be a specific character of genotype D. The results of this work emphasize once more the need of controlling invasive species and its trade, since they can carry harmful pathogens with specific adaptations or increased virulence in new environments.

Waiting
simple hit counter