JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You have subscription access to videos in this collection through your user account.

Institution Web Site

Boston University

14 articles published in JoVE

 JoVE Neuroscience

In vivo Neuronal Calcium Imaging in C. elegans

1Department of Physiology and Biophysics, Boston University School of Medicine, 2Boston University Photonics Center


JoVE 50357

With its small transparent body, well-documented neuroanatomy and a host of amenable genetic techniques and reagents, C. elegans makes an ideal model organism for in vivo neuronal imaging using relatively simple, low-cost techniques. Here we describe single neuron imaging within intact adult animals using genetically encoded fluorescent calcium indicators.

 JoVE Bioengineering

Microfluidic Chip Fabrication and Method to Detect Influenza

1Department of Mechanical Engineering, Boston University, 2Department of Biomedical Engineering, Boston University


JoVE 50325

An integrated microfluidic thermoplastic chip has been developed for use as a molecular diagnostic. The chip performs nucleic acid extraction, reverse transcriptase, and PCR. Methods for fabricating and running the chip are described.

 JoVE Biology

Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector

1Center for Regenerative Medicine (CReM), Boston University School of Medicine, 2Department of Hematology, Children's Hospital of Philadelphia, 3Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia


JoVE 4327

Here we show a simple and effective protocol for the generation of human iPSCs from 3-4 ml of peripheral blood using a single lentiviral reprogramming vector. Reprogramming of readily available blood cells promises to accelerate the utilization of iPSC technology by making it accessible to a broader research community.

 JoVE Applied Physics

Synthesis of Phase-shift Nanoemulsions with Narrow Size Distributions for Acoustic Droplet Vaporization and Bubble-enhanced Ultrasound-mediated Ablation

1Department of Mechanical Engineering, Boston University


JoVE 4308

Phase-shift nanoemulsions (PSNE) can be vaporized using high intensity focused ultrasound to enhance localized heating and improve thermal ablation in tumors. In this report, the preparation of stable PSNE with a narrow size distribution is described. Furthermore, the impact of vaporized PSNE on ultrasound-mediated ablation is demonstrated in tissue-mimicking phantoms.

 JoVE Biology

A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy

1Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, 2Department of Internal Medicine, Geriatrics & Gerontology, Wake Forest Baptist Medical Center, 3Department of Medicine, Boston University Medical Center


JoVE 3991

Mitochondrial fusion was measured by tracking the equilibration of photoconverted matrix-targeted GFP across the mitochondrial network over time. Thus far, only one cell could be subjected to an hour long kinetic analysis at a time. We present a method that simultaneously measures multiple cells, thereby speeding up the data collection process.

 JoVE Bioengineering

Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

1Department of Electrical and Computer Engineering, Boston University, 2Department of Biomedical Engineering, Boston University, 3Center for Advanced Genomics Technology, Boston University, 4Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 5Department of Microbiology, Boston University School of Medicine, 6CNR (National Research Council), Istituto di Chimica del Riconoscimento Molecolare


JoVE 2694

Quantitative, high-throughput, real-time, and label-free biomolecular detection (DNA, protein, etc.) on SiO2 surfaces can be achieved using a simple interferometric technique which relies on LED illumination, minimal optical components, and a camera. The Interferometric Reflectance Imaging Sensor (IRIS) is inexpensive, simple to use, and amenable to microarray formats.

 JoVE Neuroscience

Single-unit In vivo Recordings from the Optic Chiasm of Rat

1Department of Biomedical Engineering, Boston University


JoVE 1887

Retinal ganglion cells transmit visual information from the eye to the brain with sequences of action potentials. Here, we demonstrate how to record the action potentials of single ganglion cells in vivo from anesthetized rats.

 JoVE Neuroscience

A Novel Approach for Documenting Phosphenes Induced by Transcranial Magnetic Stimulation

1Department of Anatomy and Neurobiology, Boston University School of Medicine, 2Department of Neurology, Beth Israel Deaconess Med Center, 3Centre de Recherche de l'institut du Cerveau et la Moelle Epinière (CRICM), Centre National de la Recherche Scientifique (CNRS)


JoVE 1762

Phosphenes are transient percepts of light that can be induced by applying Transcranial Magnetic Stimulation (TMS) to visually sensitive regions of cortex. We demonstrate a standard protocol for determining the phosphene threshold value and introduce a novel method for quantifying and analyzing perceived phosphenes.

 JoVE Biology

Automated System for Single Molecule Fluorescence Measurements of Surface-immobilized Biomolecules

1Physics Department, Boston University, 2Department of Biomedical Engineering, Boston University


JoVE 1542

In this article we describe how we obtain FRET traces from individual DNA molecules immobilized to a surface using an automated scanning confocal microscope.

 JoVE Biology

Using the Horseshoe Crab, Limulus Polyphemus, in Vision Research

1Department of Biomedical Engineering, Boston University


JoVE 1384

In this video we perform electroretinogram recording, optic nerve recording, and intraretinal recording with the American horseshoe crab, Limulus Polyphemus. These electrophysiological paradigms can be used for investigating the neural basis of vision in a research or teaching lab.

 JoVE Biology

Whole-cell Recordings of Light Evoked Excitatory Synaptic Currents in the Retinal Slice

1Program in Neuroscience, Boston University, 2Department of Biology, Boston University, 3Department of Biomedical Engineering, Boston University


JoVE 771

This video shows the process of whole-cell voltage clamp recordings in the retinal slice of the aquatic tiger salamander. We demonstrate the preparation of the slice as well as how to perform patch clamp recordings during visual stimulation of the retina.

 JoVE Biology

Fabrication of the Thermoplastic Microfluidic Channels

1Department of Biomedical Engineering, Boston University


JoVE 664

Here we demonstrate how to fabricate thermoplastic microfluidic chips using hot embossing and heat sealing. Then we demonstrate how to use in situ light directed surface grafting and polymerization through the sealed chip to form the composite solid phase columns.

Waiting
simple hit counter