JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You have subscription access to videos in this collection through your user account.

Institution Web Site

University of Massachusetts Medical School

11 articles published in JoVE

 JoVE Clinical and Translational Medicine

Screening for Melanoma Modifiers using a Zebrafish Autochthonous Tumor Model

1Program in Molecular Medicine and Department of Cancer Biology, University of Massachusetts Medical School, 2Departments of Surgery and Medicine, Weill Cornell Medical College, 3Departments of Surgery and Medicine, New York Presbyterian Hospital


JoVE 50086

A rapid way to screen for melanoma modifiers using a zebrafish autochthonous tumor model is presented. It takes advantage of the miniCoopR vector which allows for expression of candidate melanoma genes in melanocytes. A method to obtain melanoma-free survival curves, an invasion assay, a protocol for antibody staining of scale melanocytes and a melanoma transplantation assay are described.

 JoVE Neuroscience

Simultaneous Recording of Calcium Signals from Identified Neurons and Feeding Behavior of Drosophila melanogaster

1Department of Neurobiology, University of Massachusetts Medical School


JoVE 3625

The fruit fly, Drosophila melanogaster, extends its proboscis for feeding, responding to a sugar stimulus from its proboscis or tarsus. I have combined observations of the proboscis extension response (PER) with a calcium imaging technique, allowing us to monitor the activity of neurons in the brain, simultaneously with behavioral observation.

 JoVE Biology

Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay

1Department of Pediatrics and Department of Cancer Biology, University of Massachusetts Medical School


JoVE 2809

A flow-cytometric method for identification and molecular analysis of differentiation-stage-specific murine erythroid progenitors and precursors, directly in freshly –harvested mouse bone marrow, spleen or fetal liver. The assay relies on cell-surface markers CD71, Ter119, and cell size.

 JoVE Clinical and Translational Medicine

Quantitative Autonomic Testing

1Department of Neurology, University of Massachusetts Medical School


JoVE 2502

Standardized, comprehensive and fully quantitative testing of autonomic functions is described. The autonomic tests consist of evaluation of all three major autonomic domains including cardiovagal, adrenergic and sudomotor. The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores.

 JoVE Biology

Isolation of Drosophila melanogaster Testes

1Department of Biochemistry & Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School


JoVE 2641

Drosophila melanogaster testes can be rapidly and efficiently isolated from adult males using dissecting needles. With practice, one can readily isolate in one or two days an amount of testes sufficient for the analysis of DNA or RNA by high throughput sequencing or more traditional molecular biology methods or of protein for antibody- or enzyme-based assays.

 JoVE Biology

Chromatin Immunoprecipitation Assay for Tissue-specific Genes using Early-stage Mouse Embryos

1Department of Cell Biology, University of Massachusetts Medical School


JoVE 2677

We demonstrate a chromatin immunoprecipitation (ChIP) method to identify factor interactions at tissue-specific genes during or after the onset of tissue-specific gene expression in mouse embryonic tissue. This protocol should be widely applicable for the study of tissue-specific gene activation as it occurs during normal embryonic development.

 JoVE Biology

Isolation and Culture of Adult Epithelial Stem Cells from Human Skin

1Department of Cancer Biology, University of Massachusetts Medical School


JoVE 2561

A rapid, robust way of isolating viable adult epithelial stem cells from human skin is described. The method utilizes enzymatic digestion of skin collagen matrix , followed by plucking of hair follicles and isolation of single cell suspensions or tissue fragments for cell culture.

 JoVE Biology

Hi-C: A Method to Study the Three-dimensional Architecture of Genomes.

1Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 2Broad Institute of Harvard and Massachusetts Institute of Technology, 3Division of Health Sciences and Technology, Massachusetts Institute of Technology, 4Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, 5Department of Applied Mathematics, Harvard University, 6Department of Physics, Massachusetts Institute of Technology, 7Department of Systems Biology, Harvard Medical School, 8Department of Biology, Massachusetts Institute of Technology


JoVE 1869

The Hi-C method allows unbiased, genome-wide identification of chromatin interactions (1). Hi-C couples proximity ligation and massively parallel sequencing. The resulting data can be used to study genomic architecture at multiple scales: initial results identified features such as chromosome territories, segregation of open and closed chromatin, and chromatin structure at the megabase scale.

 JoVE Biology

Measuring Plasma Membrane Protein Endocytic Rates by Reversible Biotinylation

1University of Massachusetts Medical School


JoVE 1669

Regulated endocytosis governs the cell surface expression levels of the majority of membrane proteins. Here we utilize reducible, membrane impermeant biotinylation reagents to measure the endocytic rate of the dopamine transporter (DAT), a polytopic membrane protein. The method facilitates a straightforward approach to measuring the endocytic rate of most plasma membrane proteins.

 JoVE Biology

Neuronal Nuclei Isolation from Human Postmortem Brain Tissue

1Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School


JoVE 914

The cellular heterogeneity of brain tissue poses a significant limitation for the study of epigenetic markings in chromatin because most assays lack single cell resolution. Neurons typically are intermingled with glia and other non-neuronal cells. We provide a protocol to extract and collect neuronal nuclei from human brain.

 JoVE Biology

A Chromatin Assay for Human Brain Tissue

1Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School


JoVE 717

Until recently, expression studies on human brain were limited to quantification of RNA or protein. With the chromatin immunoprecipitation techniques described in this paper, it will be possible to map histone methylation and other epigenetic regulators of gene expression in postmortem brain.

Waiting
simple hit counter