Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Nanotubes, Carbon: Nanometer-sized tubes composed mainly of Carbon. Such nanotubes are used as probes for high-resolution structural and chemical imaging of biomolecules with Atomic force microscopy.
 JoVE Bioengineering

Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry

1Laboratoire Matière et Systèmes Complexes (MSC), CNRS/Université Paris Diderot, 2ImagoSeine BioImaging Core Facility, Institut Jacques Monod, CNRS/Université Paris Diderot, 3Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRS/Institut de Biologie Moléculaire et Cellulaire

JoVE 50566

 JoVE Chemistry

Functionalization of Single-walled Carbon Nanotubes with Thermo-reversible Block Copolymers and Characterization by Small-angle Neutron Scattering

1Biology and Soft Matter Division, Neutron Science Directorate, Oak Ridge National Laboratory, 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 3Department of Polymer Science and Engineering, Pusan National University, 4Jülich Center for Neutron Science, Forschungszentrum Jülich

JoVE 53969

 JoVE Chemistry

Synthesis and Characterization of Fe-doped Aluminosilicate Nanotubes with Enhanced Electron Conductive Properties

1Department of Applied Science and Technology, Politecnico di Torino, 2Department of Civil and Mechanical Engineering, Università degli Studi di Cassino e del Lazio Meridionale, 3Institute of Chemistry, Politecnico di Torino, 4Department of Chemistry & NIS Interdepartmental Centre, University of Turin, 5INSTM Unit of Torino-Politecnico, Politecnico di Torino

JoVE 54758

 Science Education: Essentials of Analytical Chemistry

Raman Spectroscopy for Chemical Analysis

JoVE Science Education

Source: Laboratory of Dr. Ryoichi Ishihara — Delft University of Technology

Raman spectroscopy is a technique for analyzing vibrational and other low frequency modes in a system. In chemistry it is used to identify molecules by their Raman fingerprint. In solid-state physics it is used to characterize materials, and more specifically to investigate their crystal structure or crystallinity. Compared to other techniques for investigating the crystal structure (e.g. transmission electron microscope and x-ray diffraction) Raman micro-spectroscopy is non-destructive, generally requires no sample preparation, and can be performed on small sample volumes. For performing Raman spectroscopy a monochromatic laser is shone on a sample. If required the sample can be coated by a transparent layer which is not Raman active (e.g., SiO2) or placed in DI water. The electromagnetic radiation (typically in the near infrared, visible, or near ultraviolet range) emitted from the sample is collected, the laser wavelength is filtered out (e.g., by a notch or bandpass filter), and the resulting light is sent through a monochromator (e.g., a grating) to a CCD detector. Using this, the inelastic scattered light, originating from Raman scattering, can be captured and used to construct the Raman spectrum o

 JoVE Chemistry

Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA)

1Department of Geography, University of Zurich, 2Department of Earth and Ocean Sciences, University of South Carolina, 3Department of Earth Sciences, ETH Zurich, 4Laboratory of Ion Beam Physics, ETH Zurich, 5Department of Geological Sciences, Stockholm University

JoVE 53922

 JoVE Bioengineering

Photoacoustic Cystography

1Department of Biomedical Engineering, University at Buffalo, The State University of New York, 2Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 3School of Electrical Engineering and Computer Science, Kyungpook National University

JoVE 50340

More Results...
simple hit counter