Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Diffusion Tensor Imaging: The use of diffusion Anisotropy data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.
 Science Education: Essentials of Neuropsychology

Using Diffusion Tensor Imaging in Traumatic Brain Injury

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

Traditional brain imaging techniques using MRI are very good at visualizing the gross structures of the brain. A structural brain image made with MRI provides high contrast of the borders between gray and white matter, and information about the size and shape of brain structures. However, these images do not detail the underlying structure and integrity of white matter networks in the brain, which consist of axon bundles that interconnect local and distant brain regions. Diffusion MRI uses pulse sequences that are sensitive to the diffusion of water molecules. By measuring the direction of diffusion, it is possible to make inferences about the structure of white matter networks in the brain. Water molecules within an axon are constrained in their movements by the cell membrane; instead of randomly moving in every direction with equal probability (isotropic movement), they are more likely to move in certain directions, in parallel with the axon (anisotropic movement; Figure 1). Therefore, measures of diffusion anisotropy are thought to reflect properties of the white matter such as fiber density, axon thickness, and degree of myelination. One common measure is fractional anisotropy

 JoVE In-Press

Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease

1Institute of Imaging Science, Vanderbilt University, 2Department of Radiology and Radiological Sciences, Vanderbilt University, 3Department of Biomedical Engineering, Vanderbilt University, 4Department of Molecular Physiology and Biophysics, Vanderbilt University, 5Department of Physical Medicine and Rehabilitation, Vanderbilt University, 6Department of Physics and Astronomy, Vanderbilt University

Video Coming Soon

JoVE 52352

 JoVE Medicine

An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System

1Graduate Department of Rehabilitation Science, University of Toronto, 2Occupational Science and Occupational Therapy, University of Toronto, 3Department of Psychology, University of Toronto, 4Bloorview Kids Rehab, 5Toronto Rehab, 6Cognitive Neurology, Sunnybrook Health Sciences Centre, 7Faculty of Medicine, University of Toronto


JoVE 2226

 Science Education: Essentials of Neuroscience

fMRI: Functional Magnetic Resonance Imaging

JoVE Science Education

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique used to investigate human brain function and cognition in both healthy individuals and populations with abnormal brain states. Functional MRI utilizes a magnetic resonance signal to detect changes in blood flow that are coupled to neuronal activation when a specific task is performed. This is possible because hemoglobin within the blood has different magnetic properties depending on whether or not it is bound to oxygen. When a certain task is performed, there is an influx of oxygenated blood to brain regions responsible for that function, and this influx can then be detected with specific MRI scan parameters. This phenomenon is termed the blood oxygen level ependent (BOLD) effect, and can be used to create maps of brain activity. This video begins with a brief overview of how MRI and fMRI signal is obtained. Then, basic experimental design is reviewed, which involves first setting up a stimulus presentation that is specifically designed to test the function that will be mapped. Next, key steps involved in performing the fMRI scan are introduced, including subject safety and setting up at the scanner. Commonly used steps for data processing are then presented, including pre-processing and statistical analysis with the general linear

 JoVE In-Press

Intrarenal Injection of Escherichia coli in a Rat Model of Pyelonephritis

1Department of Radiology, Case Western Reserve University, 2Department of Urology, Case Western Reserve University, 3Department of Pediatrics, Case Western Reserve University, 4Department of Biomedical Engineering, Case Western Reserve University

Video Coming Soon

JoVE 54649

 JoVE Bioengineering

Anatomical Reconstructions of the Human Cardiac Venous System using Contrast-computed Tomography of Perfusion-fixed Specimens

1Department of Surgery, University of Minnesota, 2Department of Biomedical Engineering, University of Minnesota, 3Department of Biology, University of Minnesota, 4Department of Integrative Biology & Physiology, University of Minnesota, 5Institute for Engineering in Medicine, University of Minnesota


JoVE 50258

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy

1Department of Cellular and Molecular Physiology, Yale University School of Medicine, 2Nanobiology Institute, Yale University, 3Department of Molecular Biophysics and Biochemistry, Yale University, 4Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS)


JoVE 54349

Results below contain some, but not all of your search terms.
 JoVE Developmental Biology

Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients

1Department of Biomedical Science, The Bateson Centre, University of Sheffield, 2Institute of Genetic Medicine, Newcastle University, 3Department of Cardiovascular Science, The Bateson Centre, University of Sheffield, 4School of Biochemistry, University of Bristol, 5Biology Department, University of York


JoVE 53162

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions

1LENS - European Laboratory for Non-linear Spectroscopy, University of Florence, 2Chemistry Research Laboratory, University of Oxford, 3Department of Biology, University of Florence, 4Department of Physics and Astronomy, University of Florence, 5National Institute of Optics-National Research Council, Italy, 6International Center of Computational Neurophotonics


JoVE 51446

Results below contain some, but not all of your search terms.
 JoVE Bioengineering

A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology

1Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, 2University of Ottawa Heart Institue, University of Ottawa, 3Libin Cardiovascular Institute of Alberta, University of Calgary, 4Department of Biology, University of Ottawa, 5Institute for Science, Society and Policy, University of Ottawa


JoVE 51454

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Mapping Molecular Diffusion in the Plasma Membrane by Multiple-Target Tracing (MTT)

1Institut National de la Santé et de la Recherche Médicale, UMR 631, Parc scientifique de Luminy, 2Centre National de la Recherche Scientifique, UMR 6102, Parc scientifique de Luminy, 3Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, 4École Centrale Marseille, Technopôle de Château-Gombert, 5Institut Fresnel, Aix-Marseille University, 6Centre National de la Recherche Scientifique, UMR 6133, Aix-Marseille University


JoVE 3599

12345678958
More Results...
Waiting
simple hit counter