Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Formic Acids:
 JoVE Chemistry

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego


JoVE 51039

 JoVE Biology

Quantification of Proteins Using Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry

1Clinical Research Division, Fred Hutchinson Cancer Research Center - FHCRC, 2Department of Biochemistry and Microbiology, University of Victoria, 3Broad Institute of MIT and Harvard, 4Genome BC Proteomics Centre, University of Victoria, 5Plasma Proteome Institute


JoVE 2812

 JoVE Medicine

Quantitative Mass Spectrometric Profiling of Cancer-cell Proteomes Derived From Liquid and Solid Tumors

1Institute of Pathology, University Medical Center, Göttingen, 2Department of Hematology/Oncology, Goethe University of Frankfurt, 3Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 4Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, 5German Cancer Consortium, 6German Cancer Research Center


JoVE 52435

 JoVE Biology

Proteomics to Identify Proteins Interacting with P2X2 Ligand-Gated Cation Channels

1Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, 2Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, 3Department of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles


JoVE 1178

 JoVE Environment

LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism

1Center for Cancer Pharmacology, University of Pennsylvania, 2Center for Excellence in Environmental Toxicology, University of Pennsylvania, 3Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 4Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania, 5A.J. Drexel Autism Institute, Drexel University


JoVE 53941

 JoVE Neuroscience

Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting

1Team Alzheimer & Tauopathies, Jean-Pierre Aubert Research Centre, Inserm UMR 837, 2EA 4308-Department of Reproductive Biology-Spermiology-CECOS, CHRU-Lille, 3EA2686-Laboratorie d'Immunologie, Faculté de Médecine - Pôle Recherche, 4Department of Neurology, CHRU-Lille


JoVE 51339

 JoVE Medicine

Quantitative Analysis of Chromatin Proteomes in Disease

1Department of Anesthesiology, David Geffen School of Medicine at UCLA, 2Department of Medicine, David Geffen School of Medicine at UCLA, 3Department of Physiology, David Geffen School of Medicine at UCLA, 4Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah


JoVE 4294

 Science Education: Essentials of Analytical Chemistry

High-Performance Liquid Chromatography (HPLC)

JoVE Science Education

Source: Dr. Paul Bower - Purdue University

High-performance liquid chromatography (HPLC) is an important analytical method commonly used to separate and quantify components of liquid samples. In this technique, a solution (first phase) is pumped through a column that contains a packing of small porous particles with a second phase bound to the surface. The different solubilities of the sample components in the two phases cause the components to move through the column with different average velocities, thus creating a separation of these components. The pumped solution is called the mobile phase, while the phase in the column is called the stationary phase. There are several modes of liquid chromatography, depending upon the type of stationary and/or mobile phase employed. This experiment uses reversed-phase chromatography, where the stationary phase is non-polar, and the mobile phase is polar. The stationary phase to be employed is C18 hydrocarbon groups bonded to 3-µm silica particles, while the mobile phase is an aqueous buffer with a polar organic modifier (acetonitrile) added to vary its eluting strength. In this form, the silica can be used for samples that are water-soluble, providing a broad range of applications. In this experiment, the mixtures of three components frequently found

Results below contain some, but not all of your search terms.
 JoVE Medicine

Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS

1iC42 Clinical Research and Development, University of Colorado, Anschutz Medical Campus, 2Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, 3Food and Drug Administration (FDA), Center of Drug Evaluation Research - Office of Generic Drugs, 4Transplant Clinical Research, University of Cincinnati


JoVE 52424

Results below contain some, but not all of your search terms.
 JoVE Biology

A Lectin HPLC Method to Enrich Selectively-glycosylated Peptides from Complex Biological Samples

1Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco - UCSF, 2Buck Institute for Age Research, 3Department of Chemistry, Purdue University


JoVE 1398

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678922
More Results...
Waiting
simple hit counter