Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Fracture Healing: The physiological restoration of bone tissue and function after a fracture. It includes Bony callus formation and normal replacement of bone tissue.
 JoVE Medicine

Surgical Fixation of Sternal Fractures: Preoperative Planning and a Safe Surgical Technique Using Locked Titanium Plates and Depth Limited Drilling

1Orthopedic and Trauma Surgery, University Hospital Erlangen, 2Pediatric Surgery, University Hospital Erlangen, 3Orthopedic and Trauma Surgery, St.-Theresien Hospital, 4Institute of Anatomy I, University Erlangen-Nuremberg


JoVE 52124

 JoVE Biology

High-Throughput, Multi-Image Cryohistology of Mineralized Tissues

1Department of Reconstructive Sciences, University of Connecticut Health Center, 2Department of Computer Science and Engineering, University of Connecticut, 3Department of Orthopaedic Surgery, University of Connecticut Health Center, 4Department of Orthopaedics, University of Rochester


JoVE 54468

 JoVE Biology

Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees

1Department of Veteran Affairs, 2Department of Bioengineering, University of Utah, 3Scientific Computing and Imaging Institute , University of Utah, 4Department of Physical Medicine and Rehabilitation, University of Utah, 5Department of Orthopaedics, University of Utah


JoVE 1237

 JoVE Medicine

Tissue Characterization after a New Disaggregation Method for Skin Micro-Grafts Generation

1Burns Centre and Emilia Romagna Regional Skin Bank, 2Human Brain Wave srl, 3Plastic and Reconstructive Surgery, AOU “Ospedali Riuniti”, 4Department of Public Health, Experimental Medicine, Anatomy and Forensic, University of Pavia, 5C.H.T Centre for Health Technologies, University of Pavia


JoVE 53579

 JoVE Bioengineering

Multi-Scale Modification of Metallic Implants With Pore Gradients, Polyelectrolytes and Their Indirect Monitoring In vivo

1Biomatériaux et Bioingénieriee, INSERM, 2Service Oto-Rhino-Laryngologie, Hôpitaux Universitaires de Strasbourg, 3Faculté de Chirurgie Dentaire, Université de Strasbourg


JoVE 50533

 JoVE Neuroscience

Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

1Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 2Spinal Cord and Brain Injury Research Center, 3Department of Anatomy and Neurobiology, Department of Physical Medicine and Rehabilitation, University of Kentucky Chandler Medical Center


JoVE 3063

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

Multimodal Quantitative Phase Imaging with Digital Holographic Microscopy Accurately Assesses Intestinal Inflammation and Epithelial Wound Healing

1Department of Medicine B, University Hospital Münster, 2Institute of Palliative Care, University Hospital Münster, 3Biomedical Technology Center, University of Münster, 4Department of Gastroenterology, Klinikum Bielefeld


JoVE 54460

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton

1Department of Veterans Affairs (VA) Rehabilitation Research and Development National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 2Department of Veterans Affairs (VA) Spinal Cord Injury Service, James J. Peters VA Medical Center


JoVE 54071

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Characterization Of Multi-layered Fish Scales (Atractosteus spatula) Using Nanoindentation, X-ray CT, FTIR, and SEM

1Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 2Department of Mechanical Engineering, University of Alabama, 3Environmental Laboratory, U.S. Army Engineer Research and Development Center


JoVE 51535

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

A Mouse Fetal Skin Model of Scarless Wound Repair

1Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 2Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 3Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, 4University of Central Florida College of Medicine


JoVE 52297

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Measurement of Extracellular Ion Fluxes Using the Ion-selective Self-referencing Microelectrode Technique

1Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, 2Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, 3Department of Neurology and Center for Neuroscience, University of California, Davis Imaging of Dementia and Aging Laboratory, 4Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis


JoVE 52782

Results below contain some, but not all of your search terms.
 JoVE Biology

Visualizing Cytoplasmic Flow During Single-cell Wound Healing in Stentor coeruleus

1Physiology Course, Marine Biological Laboratory, 2Department of Biochemistry & Biophysics, University of California San Francisco, 3Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 4Max Planck Institute of Molecular Cell Biology and Genetics, 5Department of Physics, University of Illinois Urbana-Champaign


JoVE 50848

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model

1Department of Cardiothoracic Surgery, University Medical Center Utrecht, 2Vascular Connect b.v., 3Department of Neurosurgery, University Medical Center Utrecht, 4Department of Experimental Cardiology, University Medical Center Utrecht


JoVE 52127

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Earth Science

Physical Properties Of Minerals I: Crystals and Cleavage

JoVE Science Education

Source: Laboratory of Alan Lester - University of Colorado Boulder

The physical properties of minerals comprise various measurable and discernible attributes, including color, streak, magnetic properties, hardness, crystal growth form, and crystal cleavage. Each of these properties are mineral-specific, and they are fundamentally related to a particular mineral’s chemical make-up and atomic structure. This experiment examines two properties that stem primarily from symmetric repetition of fundamental, structural atomic groupings, called unit cells, within a crystal lattice, a crystal growth form, and crystal cleavage. Crystal growth form is the macroscopic expression of atomic-level symmetry, generated by the natural growth process of adding unit cells (the molecular building blocks of minerals) to a growing crystal lattice. Zones of rapid unit-cell-addition become the edges between the planar surfaces, i.e. faces, of the crystal. It is important to recognize that rocks are aggregates of mineral grains. Most rocks are polymineralic (multiple kinds of mineral grains) but some are effectively monomineralic (composed of a single mineral). Because rocks are combinations of minerals, rocks are not referred to as having crystal form. In some cases, geologists refer to rocks as having a general cleavage, but here the term is simply used

Results below contain some, but not all of your search terms.
123457
More Results...
Waiting
simple hit counter