JoVE   
You have subscription access to articles in this section through JoVE.

  JoVE Biology

  
You have subscription access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have subscription access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have subscription access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have subscription access to videos in this collection through JoVE.

Essentials of
Neuroscience

You have subscription access to videos in this collection through JoVE.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
 JoVE Biology

Easy Measurement of Diffusion Coefficients of EGFP-tagged Plasma Membrane Proteins Using k-Space Image Correlation Spectroscopy

1Institute of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, 2Departments of Chemistry and Physics, McGill University


JoVE 51074

This paper provides a step by step guide to the fluctuation analysis technique k-Space Image Correlation Spectroscopy (kICS) for measuring diffusion coefficients of fluorescently labeled plasma membrane proteins in live mammalian cells.

 JoVE Biology

ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells

1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute


JoVE 2857

The biarsenical dyes FlAsH and ReAsH bind specifically to tetracysteine motifs in proteins and can selectively label proteins in live cells. Recently this labeling strategy has been used to develop sensors for different protein conformations or oligomeric states. We describe the labeling approach and methods to quantitatively analyze binding.

 JoVE Biology

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

1Department of Biology, California Institute of Technology, 2Department of Bioengineering, California Institute of Technology, 3Synthetic Biology Center, Department of Bioengineering, Massachusetts Institute of Technology, 4School of Physics and Astronomy, University of Minnesota


JoVE 50762

This five-day protocol outlines all steps, equipment, and supplemental software necessary for creating and running an efficient endogenous Escherichia coli based TX-TL cell-free expression system from scratch. With reagents, the protocol takes 8 hours or less to setup a reaction, collect, and process data.

 JoVE Biology

The Cell-based L-Glutathione Protection Assays to Study Endocytosis and Recycling of Plasma Membrane Proteins

1Department of Nephrology, Children's Hospital of Pittsburgh of UPMC, 2Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine


JoVE 50867

Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. Methods described in this article are designed to study endocytosis and recycling of plasma membrane proteins.

 JoVE Clinical and Translational Medicine

The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool

1Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic Foundation, 2Center for Brain Health, Cleveland Clinic Foundation, 3Quantitative Health Sciences, Cleveland Clinic Foundation, 4Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation


JoVE 51318

Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report methodologic details on a new test, the Multiple Sclerosis Performance Test (MSPT). This new approach to the objective of quantification of MS related disability provides a computer-based platform for precise, valid measurement of MS severity.

 JoVE Clinical and Translational Medicine

Cell-based Assay Protocol for the Prognostic Prediction of Idiopathic Scoliosis Using Cellular Dielectric Spectroscopy

1Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, 2Department of Stomatology, Faculty of Dentistry and Department of Biochemistry, Faculty of Medicine, Université de Montréal


JoVE 50768

A structured protocol is presented for a cell-based assay as a functional test to predict the prognosis of idiopathic scoliosis using cellular dielectric spectroscopy (CDS). The assay can be performed with fresh or frozen peripheral blood mononuclear cells (PBMCs) and the procedure is completed within 4 days.

 JoVE Biology

Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay

1Department of Biology, KU Leuven


JoVE 51516

The here described fluorescence-based calcium mobilization assay is a medium-throughput reverse pharmacology screening system for the identification of functionally activating ligand(s) of orphan G protein-coupled receptors (GPCRs).

 JoVE Biology

Introduction to Solid Supported Membrane Based Electrophysiology

1Department of Biophysical Chemistry, Max Planck Institute of Biophysics, 2Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt


JoVE 50230

Here we present an electrophysiological method based on solid supported membranes with focus on its applications for the characterization of electrogenic membrane transporters.

 JoVE Bioengineering

Multi-analyte Biochip (MAB) Based on All-solid-state Ion-selective Electrodes (ASSISE) for Physiological Research

1Department of Agricultural and Biological Engineering, Birck-Bindley Physiological Sensing Facility, Purdue University, 2NASA Ames Research Center, 3Department of Chemistry, Pennsylvania State University Hazleton, 4Cooley LLP, 5NASA Life and Physical Sciences, Human Exploration and Operations Mission Directorate, NASA Headquarters


JoVE 50020

All-solid-state ion-selective electrodes (ASSISEs) constructed from a conductive polymer (CP) transducer provide several months of functional lifetime in liquid media. Here, we describe the fabrication and calibration process of ASSISEs in a lab-on-a-chip format. The ASSISE is demonstrated to have maintained a near-Nernstian slope profile after prolonged storage in complex biological media.

 JoVE Bioengineering

A Microfluidic-based Electrochemical Biochip for Label-free DNA Hybridization Analysis

1MEMS Sensors and Actuators Laboratory (MSAL), Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, 2Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland


JoVE 51797

We present a microfluidic-based electrochemical biochip for DNA hybridization detection. Following ssDNA probe functionalization, the specificity, sensitivity, and detection limit are studied with complementary and non-complementary ssDNA targets. Results illustrate the influence of the DNA hybridization events on the electrochemical system, with a detection limit of 3.8 nM.

More Results...
Waiting
simple hit counter