Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Inorganic Pyrophosphatase: An enzyme which catalyzes the hydrolysis of diphosphate (Diphosphates) into inorganic phosphate. The hydrolysis of pyrophosphate is coupled to the transport of Hydrogen ions across a membrane.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Organic Chemistry

Schlenk Lines Transfer of Solvents

JoVE Science Education

Source: Laboratory of Dr. Ian Tonks — University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Microbiology

Culturing and Enumerating Bacteria from Soil Samples

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Authors: Bradley Schmitz and Luisa Ikner

Surface soils are a heterogeneous mixture of inorganic and organic particles that combine together to form secondary aggregates. Within and between the aggregates are voids or pores that visually contain both air and water. These conditions create an ideal ecosystem for bacteria, so all soils contain vast populations of bacteria, usually over 1 million per gram of soil. Bacteria are the simplest of microorganisms, known as prokaryotes. Within this prokaryotic group, there are the filamentous microbes known as actinomycetes. Actinomycetes are actually bacteria, but they are frequently considered to be a unique group within the classification of bacteria because of their filamentous structure, which consists of multiple cells strung together to form hyphae. This experiment uses glycerol case media that select for actinomycete colonies, during dilution and plating. Typically, actinomycetes are approximately 10% of the total bacterial population. Bacteria and actinomycetes are found in every environment on Earth, but the abundance and diversity of these microbes in soil is unparalleled. These microbes are also essential for human life and affect what people eat

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Microbiology

Algae Enumeration via Culturable Methodology

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Algae are a highly heterogeneous group of microorganisms that have one common trait, namely the possession of photosynthetic pigments. In the environment, algae can cause problems for swimming pool owners by growing in the water. Algae can also cause problems in surface waters, such as lakes and reservoirs, due to algal blooms that release toxins. More recently, algae are being evaluated as novel sources of energy via algal biofuels. Blue-green algae are actually bacteria classified as cyanobacteria. Cyanobacteria not only photosynthesize, but also have the ability to fix nitrogen gas from the atmosphere. Other algae are eukaryotic, ranging from single-celled organisms to complex multicellular organisms, like seaweeds. These include the green algae, the euglenoids, the dinoflagellates, the golden brown algae, diatoms, the brown algae, and the red algae. In soils, algal populations are frequently 106 per gram. These numbers are lower than corresponding numbers for bacteria, actinomycetes, and fungi, mostly because the sunlight required for photosynthesis cannot penetrate far beneath the soil surface. Because algae are phototrophic, obtaining energy from photosyn

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

Osteoclast Derivation from Mouse Bone Marrow

1Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 2Institute for Stem Cell Biology and Regenerative Medicine, Stanford University


JoVE 52056

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory


JoVE 50731

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Microbiology

Visualizing Soil Microorganisms via the Contact Slide Assay and Microscopy

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Soil comprises the thin layer at the earth’s surface, containing biotic and abiotic factors that contribute to life. The abiotic portion includes inorganic particles ranging in size and shape that determine the soil’s texture. The biotic portion incorporates plant residues, roots, organic matter, and microorganisms. Soil microbe abundance and diversity is expansive, as one gram of soil contains 107-8 bacteria, 106-8 actinomycetes, 105-6 fungi, 103 yeast, 104-6 protozoa, 103-4 algae, and 53 nematodes. Together, the biotic and abiotic factors form architectures around plant roots, known as the rhizosphere, that provide favorable conditions for soil microorganisms. Biotic and abiotic factors promote life in soils. However, they also contribute stressful dynamics that limit microbes. Biotic stress involves competition amongst life to adapt and survive in environmental conditions. For example, microbes can secrete inhibitory or toxic substances to harm neighboring microorganisms. Penicillium notatum is a notorious fungus, as it reduces competition for nutrients by producing an a

1234
More Results...
Waiting
simple hit counter